January  2011, 10(1): 327-338. doi: 10.3934/cpaa.2011.10.327

Critical points of solutions to elliptic problems in planar domains

1. 

Departamento de Matemáticas, Universidad del Valle, Cali, Colombia, Colombia

Received  April 2009 Revised  October 2009 Published  November 2010

Given a planar domain $\Omega$, and an analytic function $f$, we describe the set of critical points for the solution $u$ of the semilinear elliptic problem $\Delta u = f(u)$ in $\Omega$, $u=0$ on $\partial\Omega$. For simply connected domains we establish that the set of critical points is finite while for non--simply connected domains we show that this set is made up of finitely many isolated points and finitely many analytic Jordan curves. Further results are given in the case that $\Omega$ is an annular domain whose border has nonzero curvature.
Citation: Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure and Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327
References:
[1]

G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19 (1992), 567-589.

[2]

J. Arango, Uniqueness of critical points for semi-linear elliptic problems in convex domains, Electron. J. Differential Equations, 2005 (2005), 1-5.

[3]

J. Arango and O. Perdomo, Morse theory for analytic functions on surfaces, J. Geom., 84 (2005), 13-22. doi: doi:10.1007/s00022-005-0027-8.

[4]

V. I. Arnold, "The Theory of Singularities and its Applications,'' Cambridge University Press, Cambridge, 1991.

[5]

X. Cabré, and S. Chanillo, Stable solutions of semilinear elliptic problems in convex domains, Selecta Math. (N.S.), 4 (1998), 1-10.

[6]

S.Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv., 51 (1976), 43-55. doi: doi:10.1007/BF02568142.

[7]

D.L. Finn, Convexity of level curves for solutions to semilinear elliptic equations, Commun. Pure Appl. Anal., 7 (2008), 1335-1343. doi: doi:10.3934/cpaa.2008.7.1335.

[8]

G. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' Springer-Verlag, Berlin, 1983.

[9]

B. Kawohl, When are solutions to nonlinear elliptic boundary value problems convex?, Comm. Partial Differential Equations, 10 (1985), 1213-1225. doi: doi:10.1080/03605308508820404.

[10]

Xi-Nan Ma, Concavity estimates for a class of nonlinear elliptic equations in two dimensions, Math. Z., 240 (2002), 1-11. doi: doi:10.1007/s002090100341.

[11]

L.G. Makar-Limanov, Solution of Dirichlet's problem for the equation $\Delta u=-1$ in a convex region, Math. Notes Acad. Sci. U.S.S.R., 9 (1971), 52-53. doi: doi:10.1007/BF01405053.

[12]

F. Müller, On the continuation of solutions for elliptic equations in two variables, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 745-776.

show all references

References:
[1]

G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19 (1992), 567-589.

[2]

J. Arango, Uniqueness of critical points for semi-linear elliptic problems in convex domains, Electron. J. Differential Equations, 2005 (2005), 1-5.

[3]

J. Arango and O. Perdomo, Morse theory for analytic functions on surfaces, J. Geom., 84 (2005), 13-22. doi: doi:10.1007/s00022-005-0027-8.

[4]

V. I. Arnold, "The Theory of Singularities and its Applications,'' Cambridge University Press, Cambridge, 1991.

[5]

X. Cabré, and S. Chanillo, Stable solutions of semilinear elliptic problems in convex domains, Selecta Math. (N.S.), 4 (1998), 1-10.

[6]

S.Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv., 51 (1976), 43-55. doi: doi:10.1007/BF02568142.

[7]

D.L. Finn, Convexity of level curves for solutions to semilinear elliptic equations, Commun. Pure Appl. Anal., 7 (2008), 1335-1343. doi: doi:10.3934/cpaa.2008.7.1335.

[8]

G. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' Springer-Verlag, Berlin, 1983.

[9]

B. Kawohl, When are solutions to nonlinear elliptic boundary value problems convex?, Comm. Partial Differential Equations, 10 (1985), 1213-1225. doi: doi:10.1080/03605308508820404.

[10]

Xi-Nan Ma, Concavity estimates for a class of nonlinear elliptic equations in two dimensions, Math. Z., 240 (2002), 1-11. doi: doi:10.1007/s002090100341.

[11]

L.G. Makar-Limanov, Solution of Dirichlet's problem for the equation $\Delta u=-1$ in a convex region, Math. Notes Acad. Sci. U.S.S.R., 9 (1971), 52-53. doi: doi:10.1007/BF01405053.

[12]

F. Müller, On the continuation of solutions for elliptic equations in two variables, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 745-776.

[1]

Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 4215-4228. doi: 10.3934/era.2021080

[2]

Philip Schrader. Morse theory for elastica. Journal of Geometric Mechanics, 2016, 8 (2) : 235-256. doi: 10.3934/jgm.2016006

[3]

Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 55-82. doi: 10.3934/dcdsb.2018100

[4]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[5]

Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483

[6]

Joseph Iaia. Existence of infinitely many solutions for semilinear problems on exterior domains. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4269-4284. doi: 10.3934/cpaa.2020193

[7]

Grzegorz Graff, Jerzy Jezierski. Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds. Conference Publications, 2011, 2011 (Special) : 523-532. doi: 10.3934/proc.2011.2011.523

[8]

Jingbo Dou, Qianqiao Guo. Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains. Communications on Pure and Applied Analysis, 2012, 11 (2) : 453-464. doi: 10.3934/cpaa.2012.11.453

[9]

Diego D. Felix, Marcelo F. Furtado, Everaldo S. Medeiros. Semilinear elliptic problems involving exponential critical growth in the half-space. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4937-4953. doi: 10.3934/cpaa.2020219

[10]

Alexandre Nolasco de Carvalho, Marcelo J. D. Nascimento. Singularly non-autonomous semilinear parabolic problems with critical exponents. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 449-471. doi: 10.3934/dcdss.2009.2.449

[11]

Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch. Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes. Mathematical Control and Related Fields, 2018, 8 (1) : 217-245. doi: 10.3934/mcrf.2018010

[12]

Mirela Kohr, Cornel Pintea, Wolfgang L. Wendland. Dirichlet - transmission problems for general Brinkman operators on Lipschitz and $C^1$ domains in Riemannian manifolds. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 999-1018. doi: 10.3934/dcdsb.2011.15.999

[13]

Daomin Cao, Norman E. Dancer, Ezzat S. Noussair, Shunsen Yan. On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 221-236. doi: 10.3934/dcds.1996.2.221

[14]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[15]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[16]

Fabio Giannoni, Paolo Piccione, Daniel V. Tausk. Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 697-724. doi: 10.3934/dcds.2002.8.697

[17]

Asadollah Aghajani. Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3521-3530. doi: 10.3934/dcds.2017150

[18]

Vladimir P. Burskii, Alexei S. Zhedanov. On Dirichlet, Poncelet and Abel problems. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1587-1633. doi: 10.3934/cpaa.2013.12.1587

[19]

Kelei Wang. Recent progress on stable and finite Morse index solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 3805-3816. doi: 10.3934/era.2021062

[20]

Wolfgang Arendt, Daniel Daners. Varying domains: Stability of the Dirichlet and the Poisson problem. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 21-39. doi: 10.3934/dcds.2008.21.21

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (243)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]