January  2011, 10(1): 339-359. doi: 10.3934/cpaa.2011.10.339

On the global attractor of the Trojan Y Chromosome model

1. 

Clarkson University, Department of Mathematics & Computer Science, 106 Technology Advancement Center, Potsdam, NY 13676, USA Government

2. 

Mathematical Biosciences Institute, The Ohio State University, 1735 Neil Ave, 3rd Floor, Columbus, OH 43210, USA Government

Received  January 2010 Revised  June 2010 Published  November 2010

We consider the Trojan Y Chromosome (TYC) model for eradication of invasive species in population dynamics. We present global estimates for the TYC system in a spatial domain. In this work we prove the existence of a global attractor for the system. We derive uniform estimates to tackle the question of asymptotic compactness of the semi-group for the TYC model in $H^2(\Omega)$. This along with the existence of a bounded absorbing set, which we also derive, demonstrates the existence of a global attractor for the TYC model. The present analysis reveals that extinction of an invasive species is always possible to achieve irrespective of geometric considerations of the domain. This result is valid for TYC systems in which advection is negligible. This theoretical work lays the foundation for experimental studies of the application of the TYC eradication strategy in spatial ecology, since the outcome is in principle guaranteed.
Citation: Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339
References:
[1]

P. Brown and T. I. Walker, CARPSIM: stochastic simulation modelling of wild carp (Cyprinus carpio L.) population dynamics, with applications to pest control,, Ecological Modelling, 176 (2004), 83.  doi: doi:10.1016/j.ecolmodel.2003.11.009.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations,", Wiley, (2003).   Google Scholar

[3]

"Economic Research Service, United States Department of Agriculture,", Agricultural Outlook: Statistical Indicators, May 2009., Retrieved on 06/01/2009 from \url{http://www.ers.usda.gov/publications/agoutlook/aotables/}., ().   Google Scholar

[4]

J. B. Gutierrez, "Mathematical Analysis of The Use Of Trojan Sex Chromosomes as Means of Eradication of Invasive Species,", PhD thesis, (2009).   Google Scholar

[5]

J. B. Gutierrez, M. K. Hurdal, R. D. Parshad and J. L. Teem, Analysis of the trojan y chromosome model for eradication of invasive species in a dendritic riverine system,, Submitted for publication, (2010).   Google Scholar

[6]

J. B. Gutierrez and J. L. Teem, A model describing the effect of sex-reversed YY fish in an established wild population: the use of a Trojan Y chromosome to cause extinction of an introduced exotic species,, Journal of Theoretical Biology, 241 (2006), 333.  doi: doi:10.1016/j.jtbi.2005.11.032.  Google Scholar

[7]

J. E. Hill and C. E. Cichra, Eradication of a reproducing population of Convict Cichlids, Cichlasoma nigrofasciatum (Cichlidae) in North-Central Florida,, Florida Scientist, 68 (2005), 65.   Google Scholar

[8]

J. J. Hoover, K. J. Killgore and A. F. Cofrancesco, Suckermouth catfishes: threats to aquatic ecosystems of the United States?, Aquatic Nuisance Species Research, 4 (2004), 1.   Google Scholar

[9]

R. D. Howard, J. A. DeWoody and W. M. Muir, Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish,, Proceedings of the National Academy of Sciences, 101 (2004), 2934.  doi: doi:10.1073/pnas.0306285101.  Google Scholar

[10]

M. A. Hurley, P. Matthiesen and A. D. Pickering, A model for environmental sex reversal in fish,, Journal of Theoretical Biology, 227 (2004), 159.  doi: doi:10.1016/j.jtbi.2003.10.010.  Google Scholar

[11]

W. M. Muir and R. D. Howard, Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis,, Proceedings of the National Academy of Sciences, 96 (1999), 13853.  doi: doi:10.1073/pnas.96.24.13853.  Google Scholar

[12]

J. H. Myers, D. Simberloff, A. M. Kuris and J. R. Carey, Eradication revisited: dealing with exotic species,, Trends in Ecology & Evolution, 15 (2000), 316.  doi: doi:10.1016/S0169-5347(00)01914-5.  Google Scholar

[13]

J. J. Nagler, J. Bouma, G. H. Thorgaard and D. D. Dauble, High incidence of a male-specific genetic marker in phenotypic female Chinook salmon from the Columbia river,, Environmental Health Perspectives, 109 (2001), 67.  doi: doi:10.2307/3434923.  Google Scholar

[14]

O. T. A., Harmful non-indigenous species in the United States,, OTA-F-565 U.S. Congress, (1993).   Google Scholar

[15]

P. Palace, R. E. Evans, K. Wautierand L. Vandenbyllardt, W. W. Vandersteen and K. Kidd, Induction of vitellogenin and histological effects in wild fathead minnows from a lake experimentally treated with the synthetic estrogen, ethynylestradiol,, Water Quality Research Journal Canada, 37 (2002), 637.   Google Scholar

[16]

R. D. Parshad and J. B. Gutierrez, On the well-posedness of the TYC system,, Submitted for publication, (2010).   Google Scholar

[17]

D. Pimentel, R. Zuniga and D. Morrison, Update on the environmental and economic costs associated with alien-invasive species in the united states,, Ecological Economics, 52 (2005), 273.   Google Scholar

[18]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems,", Cambridge University Press, (2001).   Google Scholar

[19]

P. L. Shafland, Exotic fish assessments: an alternative view,, Reviews in Fisheries Science, 4 (1996), 123.  doi: doi:10.1080/10641269609388582.  Google Scholar

[20]

P. L. Shafland, Exotic fishes of Florida 1994,, Reviews in Fisheries Science, 4 (1996), 101.  doi: doi:10.1080/10641269609388581.  Google Scholar

[21]

P. L. Shafland and K. L. Foote, A reproducing population of Serrasalmus humeralis Valenciennes in southern Florida,, Florida Scientist, 42 (1979), 206.   Google Scholar

[22]

W. L. Shelton, Broodstock development for monosex production of grass carp,, Aquaculture, 57 (1986), 311.  doi: doi:10.1016/0044-8486(86)90209-7.  Google Scholar

[23]

R. Temam, "Navier Stokes Equations and Nonlinear Functional Analysis,", Society for Industrial and Applied Mathematics, (1985).   Google Scholar

[24]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1998).   Google Scholar

show all references

References:
[1]

P. Brown and T. I. Walker, CARPSIM: stochastic simulation modelling of wild carp (Cyprinus carpio L.) population dynamics, with applications to pest control,, Ecological Modelling, 176 (2004), 83.  doi: doi:10.1016/j.ecolmodel.2003.11.009.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations,", Wiley, (2003).   Google Scholar

[3]

"Economic Research Service, United States Department of Agriculture,", Agricultural Outlook: Statistical Indicators, May 2009., Retrieved on 06/01/2009 from \url{http://www.ers.usda.gov/publications/agoutlook/aotables/}., ().   Google Scholar

[4]

J. B. Gutierrez, "Mathematical Analysis of The Use Of Trojan Sex Chromosomes as Means of Eradication of Invasive Species,", PhD thesis, (2009).   Google Scholar

[5]

J. B. Gutierrez, M. K. Hurdal, R. D. Parshad and J. L. Teem, Analysis of the trojan y chromosome model for eradication of invasive species in a dendritic riverine system,, Submitted for publication, (2010).   Google Scholar

[6]

J. B. Gutierrez and J. L. Teem, A model describing the effect of sex-reversed YY fish in an established wild population: the use of a Trojan Y chromosome to cause extinction of an introduced exotic species,, Journal of Theoretical Biology, 241 (2006), 333.  doi: doi:10.1016/j.jtbi.2005.11.032.  Google Scholar

[7]

J. E. Hill and C. E. Cichra, Eradication of a reproducing population of Convict Cichlids, Cichlasoma nigrofasciatum (Cichlidae) in North-Central Florida,, Florida Scientist, 68 (2005), 65.   Google Scholar

[8]

J. J. Hoover, K. J. Killgore and A. F. Cofrancesco, Suckermouth catfishes: threats to aquatic ecosystems of the United States?, Aquatic Nuisance Species Research, 4 (2004), 1.   Google Scholar

[9]

R. D. Howard, J. A. DeWoody and W. M. Muir, Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish,, Proceedings of the National Academy of Sciences, 101 (2004), 2934.  doi: doi:10.1073/pnas.0306285101.  Google Scholar

[10]

M. A. Hurley, P. Matthiesen and A. D. Pickering, A model for environmental sex reversal in fish,, Journal of Theoretical Biology, 227 (2004), 159.  doi: doi:10.1016/j.jtbi.2003.10.010.  Google Scholar

[11]

W. M. Muir and R. D. Howard, Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis,, Proceedings of the National Academy of Sciences, 96 (1999), 13853.  doi: doi:10.1073/pnas.96.24.13853.  Google Scholar

[12]

J. H. Myers, D. Simberloff, A. M. Kuris and J. R. Carey, Eradication revisited: dealing with exotic species,, Trends in Ecology & Evolution, 15 (2000), 316.  doi: doi:10.1016/S0169-5347(00)01914-5.  Google Scholar

[13]

J. J. Nagler, J. Bouma, G. H. Thorgaard and D. D. Dauble, High incidence of a male-specific genetic marker in phenotypic female Chinook salmon from the Columbia river,, Environmental Health Perspectives, 109 (2001), 67.  doi: doi:10.2307/3434923.  Google Scholar

[14]

O. T. A., Harmful non-indigenous species in the United States,, OTA-F-565 U.S. Congress, (1993).   Google Scholar

[15]

P. Palace, R. E. Evans, K. Wautierand L. Vandenbyllardt, W. W. Vandersteen and K. Kidd, Induction of vitellogenin and histological effects in wild fathead minnows from a lake experimentally treated with the synthetic estrogen, ethynylestradiol,, Water Quality Research Journal Canada, 37 (2002), 637.   Google Scholar

[16]

R. D. Parshad and J. B. Gutierrez, On the well-posedness of the TYC system,, Submitted for publication, (2010).   Google Scholar

[17]

D. Pimentel, R. Zuniga and D. Morrison, Update on the environmental and economic costs associated with alien-invasive species in the united states,, Ecological Economics, 52 (2005), 273.   Google Scholar

[18]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems,", Cambridge University Press, (2001).   Google Scholar

[19]

P. L. Shafland, Exotic fish assessments: an alternative view,, Reviews in Fisheries Science, 4 (1996), 123.  doi: doi:10.1080/10641269609388582.  Google Scholar

[20]

P. L. Shafland, Exotic fishes of Florida 1994,, Reviews in Fisheries Science, 4 (1996), 101.  doi: doi:10.1080/10641269609388581.  Google Scholar

[21]

P. L. Shafland and K. L. Foote, A reproducing population of Serrasalmus humeralis Valenciennes in southern Florida,, Florida Scientist, 42 (1979), 206.   Google Scholar

[22]

W. L. Shelton, Broodstock development for monosex production of grass carp,, Aquaculture, 57 (1986), 311.  doi: doi:10.1016/0044-8486(86)90209-7.  Google Scholar

[23]

R. Temam, "Navier Stokes Equations and Nonlinear Functional Analysis,", Society for Industrial and Applied Mathematics, (1985).   Google Scholar

[24]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1998).   Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[6]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[11]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[12]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]