March  2011, 10(2): 397-414. doi: 10.3934/cpaa.2011.10.397

Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS on $R^2$

1. 

Department of Mathematics University of Toronto, 100 St. George St, Room 4072 Toronto, Ontario M5S 3G3

2. 

Department Of Mathematics, University of California, Los Angeles, CA, USA Government

Received  June 2010 Revised  October 2010 Published  December 2010

We prove global well-posedness for the $L^2$-critical cubic defocusing nonlinear Schrödinger equation on $R^2$ with data $u_0 \in H^s(R^2)$ for $ s > \frac{1}{3}$. The proof combines a priori Morawetz estimates obtained in [4] and the improved almost conservation law obtained in [6]. There are two technical difficulties. The first one is to estimate the variation of the improved almost conservation law on intervals given in terms of Strichartz spaces rather than in terms of $X^{s,b}$ spaces. The second one is to control the error of the a priori Morawetz estimates on an arbitrary large time interval, which is performed by a bootstrap via a double layer in time decomposition.
Citation: J. Colliander, Tristan Roy. Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS on $R^2$. Communications on Pure & Applied Analysis, 2011, 10 (2) : 397-414. doi: 10.3934/cpaa.2011.10.397
References:
[1]

J. Bourgain, Refinement of Strichartz inequality and applications to $2D-NLS$ with critical nonlinearity,, Internat. Math. Res. Notices, 5 (1998), 253.  doi: doi:10.1155/S1073792898000191.  Google Scholar

[2]

J. Bourgain, "Global Solutions of Nonlinear Schrödinger Equations,", American Mathematical Society, (1999).   Google Scholar

[3]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Non. Anal. TMA, 14 (1990), 807.   Google Scholar

[4]

J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on $R^2$ ,, Int. Math. Res. Not., 23 (2007).   Google Scholar

[5]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation,, Math. Res. Letters, 9 (2002), 659.   Google Scholar

[6]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Resonant decompositions and the $I$-method for the cubic nonlinear Schröinger equation on $Bbb R^2$,, Discrete Contin. Dyn. Syst., 21 (2008), 665.  doi: doi:10.3934/dcds.2008.21.665.  Google Scholar

[7]

Y. Fang and M. Grillakis, On the global existence of rough solutions of the cubic defocusing Schrödinger equation in $R^{2+1}$,, J. Hyperbolic Differ. Equ., 4 (2007), 233.   Google Scholar

[8]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equations in two dimensions with radial data,, Journ. Eur. Math. Soc. (JEMS), 11 (2009), 1203.   Google Scholar

show all references

References:
[1]

J. Bourgain, Refinement of Strichartz inequality and applications to $2D-NLS$ with critical nonlinearity,, Internat. Math. Res. Notices, 5 (1998), 253.  doi: doi:10.1155/S1073792898000191.  Google Scholar

[2]

J. Bourgain, "Global Solutions of Nonlinear Schrödinger Equations,", American Mathematical Society, (1999).   Google Scholar

[3]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Non. Anal. TMA, 14 (1990), 807.   Google Scholar

[4]

J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on $R^2$ ,, Int. Math. Res. Not., 23 (2007).   Google Scholar

[5]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation,, Math. Res. Letters, 9 (2002), 659.   Google Scholar

[6]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Resonant decompositions and the $I$-method for the cubic nonlinear Schröinger equation on $Bbb R^2$,, Discrete Contin. Dyn. Syst., 21 (2008), 665.  doi: doi:10.3934/dcds.2008.21.665.  Google Scholar

[7]

Y. Fang and M. Grillakis, On the global existence of rough solutions of the cubic defocusing Schrödinger equation in $R^{2+1}$,, J. Hyperbolic Differ. Equ., 4 (2007), 233.   Google Scholar

[8]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equations in two dimensions with radial data,, Journ. Eur. Math. Soc. (JEMS), 11 (2009), 1203.   Google Scholar

[1]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[2]

Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100

[3]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[4]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[5]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[6]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[7]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[8]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[9]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[10]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[11]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[12]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[13]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[14]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[15]

Chengchun Hao. Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 997-1021. doi: 10.3934/cpaa.2007.6.997

[16]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[17]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[18]

Tadahiro Oh, Mamoru Okamoto, Oana Pocovnicu. On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3479-3520. doi: 10.3934/dcds.2019144

[19]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[20]

J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure & Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]