Citation: |
[1] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Applied Mathematical Sciences, New York, Springer-Verlag, 1994. |
[2] |
R.-J. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_\xi(H^N_x)$, J. Differential Equations, 228 (2008), 641-660. |
[3] |
R.-J. Duan, S. Ukai, T. Yang and H.-J. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236.doi: doi:10.1007/s00220-007-0366-4. |
[4] |
R. T. Glassey, "The Cauchy Problem in Kinetic Theory," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. |
[5] |
Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.doi: doi:10.1002/cpa.10040. |
[6] |
Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630.doi: doi:10.1007/s00222-003-0301-z. |
[7] |
Y. Guo, The Boltzmann equation in the whole space, Indiann Univ. Math. J., 53 (2004), 1081-1194.doi: doi:10.1512/iumj.2004.53.2574. |
[8] |
Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.doi: doi:10.1002/cpa.20121. |
[9] |
L. Hsiao and H.-J. Yu, Global classical solutions to the initial value problem for the relativistic Landau equation, J. Differential Equations, 228 (2006), 641-660.doi: doi:10.1016/j.jde.2005.10.022. |
[10] |
L. Hsiao and H.-J. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials, Quart. Appl. Math., 65 (2007), 281-315. |
[11] |
S. Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.doi: doi:10.1007/BF03167846. |
[12] |
T.-P. Liu, T. Yang and S.-H. Yu, Energy method for the Boltzmann equation, Physica D, 188 (2004), 178-192.doi: doi:10.1016/j.physd.2003.07.011. |
[13] |
T.-P. Liu and S.-H. Yu, Boltzmann equation: micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179.doi: doi:10.1007/s00220-003-1030-2. |
[14] |
T. Nishida, and K. Imai, Global solutions to the initial value problem for the nonlinear Boltzmann equation, Publ. Res. Inst. Math. Sci., 12 (1976/1977), 229-239. |
[15] |
Y. Shizuta, On the classical solutions of the Boltzmann equation, Comm. Pure Appl. Math., 36 (1983), 705-754.doi: doi:10.1002/cpa.3160360602. |
[16] |
S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184.doi: doi:10.3792/pja/1195519027. |
[17] |
S. Ukai, Les solutions globale de l'équation de Boltzmann dans l'espace tout entier et dans le demi-espace, C. R. Acad. Sci. Paris Ser. A, 282 (1976), 317-320. |
[18] |
S. Ukai, and T. Yang, Mathematical theory of Boltzmann equation, Lecture Notes Series-No. 8, Hongkong: Liu Bie Ju Center of Mathematical Sciences, City University of Hongkong, 2006. |
[19] |
T. Yang and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010), 1518-1560.doi: doi:10.1016/j.jde.2009.11.027. |
[20] |
T. Yang and H.-J. Yu, Optimal convergence rates of Landau equation with external forcing in the whole space, Acta Mathematica Scientia, 29 B (2009), 1035-1062. |
[21] |
T. Yang, H.-J. Yu and H.-J. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Ration. Mech. Anal., 182 (2006), 415-470.doi: doi:10.1007/s00205-006-0009-5. |
[22] |
T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605.doi: doi:10.1007/s00220-006-0103-4. |
[23] |
T. Yang, and H.-J. Zhao, A new energy method for the Boltzmann equation, J. Math. Phys., 47 (2006), 053301, 19 pp. |
[24] |
H.-J. Yu, Existence and exponential decay of global solution to the Boltzmann equation near Maxwellians, Math. Mod. Meth. Appl. Sci., 15 (2005), 483-505.doi: doi:10.1142/S0218202505000443. |
[25] |
H.-J. Yu, $H^N$ stability of the Vlasov-Poisson-Boltzmann system near Maxwellians, Proc. Royal. Soc. Edinburgh, 137A (2007), 431-446.doi: doi:10.1017/S0308210505001186. |