-
Previous Article
The obstacle problem for Monge-Ampère type equations in non-convex domains
- CPAA Home
- This Issue
-
Next Article
Analysis of the Laplacian and spectral operators on the Vicsek set
The existence of weak solutions for a generalized Camassa-Holm equation
1. | Department of Mathematics,Sichuan Normal University, Chengdu, Department of Mathematics and Statistics,Curtin University of Technology, Perth, China |
2. | Department of Applied Mathematics, Southwestern University of Finance and Economics, 610074, Chengdu, China, China, China |
References:
[1] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.
doi: doi:10.1103/PhysRevLett.71.1661. |
[2] |
Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.
doi: doi:10.1006/jdeq.1999.3683. |
[3] |
Z. H. Guo, M. Jiang, Z. Wang and G. F. Zheng, Global weak solutions to the Camassa-Holm equation,, Discrete and Continuous Dynamical Systems, 21 (2008), 883.
doi: doi:10.3934/dcds.2008.21.883. |
[4] |
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.
doi: doi:10.1007/s002200050801. |
[5] |
R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.
doi: doi:10.1016/S0022-0396(03)00096-2. |
[6] |
A. M. Wazwaz, A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions,, Appl. Math. Comput., 165 (2005), 485.
doi: doi:10.1016/j.amc.2004.04.029. |
[7] |
A. M. Wazwaz, The tanh-coth and the sine-cosine methods for kinks, solitons and periodic solutions for the Pochhammer-Chree equations,, Appl. Math. Comput., 195 (2008), 24.
doi: doi:10.1016/j.amc.2007.04.066. |
[8] |
L. X. Tian and X. Y. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos, 19 (2004), 621.
doi: doi:10.1016/S0960-0779(03)00192-9. |
[9] |
Y. Zheng and S. Y. Lai, Peakons, solitary patterns and periodic solutions for generalized Camassa-Holm equations,, Phys. Lett. A, 372 (2008), 4141.
doi: doi:10.1016/j.physleta.2007.03.096. |
[10] |
S. Hakkaev and K. Kirchev, Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation,, Communications in Partial Differential Equations, 30 (2005), 761.
doi: doi:10.1081/PDE-200059284. |
[11] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equation,, Commun. Pure Appl. Math., 41 (1988), 891.
doi: doi:10.1002/cpa.3160410704. |
[12] |
J. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation,, Phil. Trans. Roy. Soc. London Ser. A, 278 (1975), 555.
doi: doi:10.1098/rsta.1975.0035. |
[13] |
A. Moameni, Soliton solutions for quasilinear Schr$\ddoto$dinger equations involving supercritical exponent in $R^N$,, Communications on Pure and Applied Analysis, 7 (2008), 89.
doi: doi:10.3934/cpaa.2008.7.89. |
[14] |
R. M. Colombo and G. Guerra, Hyperbolic balance laws with a dissipative non local source,, Communications on Pure and Applied Analysis, 7 (2008), 1077.
doi: doi:10.3934/cpaa.2008.7.1077. |
[15] |
D. Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation,, Communications on Pure and Applied Analysis, 7 (2008), 867.
doi: doi:10.3934/cpaa.2008.7.867. |
[16] |
K. Y. Wang, Global well-posedness for a transport equation with non-local velocity and critical diffusion,, Communications on Pure and Applied Analysis, 7 (2008), 1203.
doi: doi:10.3934/cpaa.2008.7.1203. |
[17] |
C. L. He, D. X. Kong and K. F. Liu, Hyperbolic mean curvature flow,, J. Differential Equations, 246 (2009), 373.
doi: doi:10.1016/j.jde.2008.06.026. |
show all references
References:
[1] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.
doi: doi:10.1103/PhysRevLett.71.1661. |
[2] |
Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.
doi: doi:10.1006/jdeq.1999.3683. |
[3] |
Z. H. Guo, M. Jiang, Z. Wang and G. F. Zheng, Global weak solutions to the Camassa-Holm equation,, Discrete and Continuous Dynamical Systems, 21 (2008), 883.
doi: doi:10.3934/dcds.2008.21.883. |
[4] |
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.
doi: doi:10.1007/s002200050801. |
[5] |
R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.
doi: doi:10.1016/S0022-0396(03)00096-2. |
[6] |
A. M. Wazwaz, A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions,, Appl. Math. Comput., 165 (2005), 485.
doi: doi:10.1016/j.amc.2004.04.029. |
[7] |
A. M. Wazwaz, The tanh-coth and the sine-cosine methods for kinks, solitons and periodic solutions for the Pochhammer-Chree equations,, Appl. Math. Comput., 195 (2008), 24.
doi: doi:10.1016/j.amc.2007.04.066. |
[8] |
L. X. Tian and X. Y. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos, 19 (2004), 621.
doi: doi:10.1016/S0960-0779(03)00192-9. |
[9] |
Y. Zheng and S. Y. Lai, Peakons, solitary patterns and periodic solutions for generalized Camassa-Holm equations,, Phys. Lett. A, 372 (2008), 4141.
doi: doi:10.1016/j.physleta.2007.03.096. |
[10] |
S. Hakkaev and K. Kirchev, Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation,, Communications in Partial Differential Equations, 30 (2005), 761.
doi: doi:10.1081/PDE-200059284. |
[11] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equation,, Commun. Pure Appl. Math., 41 (1988), 891.
doi: doi:10.1002/cpa.3160410704. |
[12] |
J. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation,, Phil. Trans. Roy. Soc. London Ser. A, 278 (1975), 555.
doi: doi:10.1098/rsta.1975.0035. |
[13] |
A. Moameni, Soliton solutions for quasilinear Schr$\ddoto$dinger equations involving supercritical exponent in $R^N$,, Communications on Pure and Applied Analysis, 7 (2008), 89.
doi: doi:10.3934/cpaa.2008.7.89. |
[14] |
R. M. Colombo and G. Guerra, Hyperbolic balance laws with a dissipative non local source,, Communications on Pure and Applied Analysis, 7 (2008), 1077.
doi: doi:10.3934/cpaa.2008.7.1077. |
[15] |
D. Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation,, Communications on Pure and Applied Analysis, 7 (2008), 867.
doi: doi:10.3934/cpaa.2008.7.867. |
[16] |
K. Y. Wang, Global well-posedness for a transport equation with non-local velocity and critical diffusion,, Communications on Pure and Applied Analysis, 7 (2008), 1203.
doi: doi:10.3934/cpaa.2008.7.1203. |
[17] |
C. L. He, D. X. Kong and K. F. Liu, Hyperbolic mean curvature flow,, J. Differential Equations, 246 (2009), 373.
doi: doi:10.1016/j.jde.2008.06.026. |
[1] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
[2] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[3] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[4] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[5] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[6] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[7] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[8] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[9] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[10] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[11] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[12] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[13] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[14] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[15] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[16] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[17] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[18] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[19] |
Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021003 |
[20] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]