January  2011, 10(1): 45-57. doi: 10.3934/cpaa.2011.10.45

The existence of weak solutions for a generalized Camassa-Holm equation

1. 

Department of Mathematics,Sichuan Normal University, Chengdu, Department of Mathematics and Statistics,Curtin University of Technology, Perth, China

2. 

Department of Applied Mathematics, Southwestern University of Finance and Economics, 610074, Chengdu, China, China, China

Received  October 2009 Revised  August 2010 Published  November 2010

A Camassa-Holm type equation containing nonlinear dissipative effect is investigated. A sufficient condition which guarantees the existence of weak solutions of the equation in lower order Sobolev space $H^s$ with $1 \leq s \leq \frac{3}{2}$ is established by using the techniques of the pseudoparabolic regularization and some prior estimates derived from the equation itself.
Citation: Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45
References:
[1]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: doi:10.1103/PhysRevLett.71.1661.  Google Scholar

[2]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: doi:10.1006/jdeq.1999.3683.  Google Scholar

[3]

Z. H. Guo, M. Jiang, Z. Wang and G. F. Zheng, Global weak solutions to the Camassa-Holm equation,, Discrete and Continuous Dynamical Systems, 21 (2008), 883.  doi: doi:10.3934/dcds.2008.21.883.  Google Scholar

[4]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.  doi: doi:10.1007/s002200050801.  Google Scholar

[5]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.  doi: doi:10.1016/S0022-0396(03)00096-2.  Google Scholar

[6]

A. M. Wazwaz, A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions,, Appl. Math. Comput., 165 (2005), 485.  doi: doi:10.1016/j.amc.2004.04.029.  Google Scholar

[7]

A. M. Wazwaz, The tanh-coth and the sine-cosine methods for kinks, solitons and periodic solutions for the Pochhammer-Chree equations,, Appl. Math. Comput., 195 (2008), 24.  doi: doi:10.1016/j.amc.2007.04.066.  Google Scholar

[8]

L. X. Tian and X. Y. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos, 19 (2004), 621.  doi: doi:10.1016/S0960-0779(03)00192-9.  Google Scholar

[9]

Y. Zheng and S. Y. Lai, Peakons, solitary patterns and periodic solutions for generalized Camassa-Holm equations,, Phys. Lett. A, 372 (2008), 4141.  doi: doi:10.1016/j.physleta.2007.03.096.  Google Scholar

[10]

S. Hakkaev and K. Kirchev, Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation,, Communications in Partial Differential Equations, 30 (2005), 761.  doi: doi:10.1081/PDE-200059284.  Google Scholar

[11]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equation,, Commun. Pure Appl. Math., 41 (1988), 891.  doi: doi:10.1002/cpa.3160410704.  Google Scholar

[12]

J. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation,, Phil. Trans. Roy. Soc. London Ser. A, 278 (1975), 555.  doi: doi:10.1098/rsta.1975.0035.  Google Scholar

[13]

A. Moameni, Soliton solutions for quasilinear Schr$\ddoto$dinger equations involving supercritical exponent in $R^N$,, Communications on Pure and Applied Analysis, 7 (2008), 89.  doi: doi:10.3934/cpaa.2008.7.89.  Google Scholar

[14]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a dissipative non local source,, Communications on Pure and Applied Analysis, 7 (2008), 1077.  doi: doi:10.3934/cpaa.2008.7.1077.  Google Scholar

[15]

D. Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation,, Communications on Pure and Applied Analysis, 7 (2008), 867.  doi: doi:10.3934/cpaa.2008.7.867.  Google Scholar

[16]

K. Y. Wang, Global well-posedness for a transport equation with non-local velocity and critical diffusion,, Communications on Pure and Applied Analysis, 7 (2008), 1203.  doi: doi:10.3934/cpaa.2008.7.1203.  Google Scholar

[17]

C. L. He, D. X. Kong and K. F. Liu, Hyperbolic mean curvature flow,, J. Differential Equations, 246 (2009), 373.  doi: doi:10.1016/j.jde.2008.06.026.  Google Scholar

show all references

References:
[1]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: doi:10.1103/PhysRevLett.71.1661.  Google Scholar

[2]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: doi:10.1006/jdeq.1999.3683.  Google Scholar

[3]

Z. H. Guo, M. Jiang, Z. Wang and G. F. Zheng, Global weak solutions to the Camassa-Holm equation,, Discrete and Continuous Dynamical Systems, 21 (2008), 883.  doi: doi:10.3934/dcds.2008.21.883.  Google Scholar

[4]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.  doi: doi:10.1007/s002200050801.  Google Scholar

[5]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.  doi: doi:10.1016/S0022-0396(03)00096-2.  Google Scholar

[6]

A. M. Wazwaz, A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions,, Appl. Math. Comput., 165 (2005), 485.  doi: doi:10.1016/j.amc.2004.04.029.  Google Scholar

[7]

A. M. Wazwaz, The tanh-coth and the sine-cosine methods for kinks, solitons and periodic solutions for the Pochhammer-Chree equations,, Appl. Math. Comput., 195 (2008), 24.  doi: doi:10.1016/j.amc.2007.04.066.  Google Scholar

[8]

L. X. Tian and X. Y. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos, 19 (2004), 621.  doi: doi:10.1016/S0960-0779(03)00192-9.  Google Scholar

[9]

Y. Zheng and S. Y. Lai, Peakons, solitary patterns and periodic solutions for generalized Camassa-Holm equations,, Phys. Lett. A, 372 (2008), 4141.  doi: doi:10.1016/j.physleta.2007.03.096.  Google Scholar

[10]

S. Hakkaev and K. Kirchev, Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation,, Communications in Partial Differential Equations, 30 (2005), 761.  doi: doi:10.1081/PDE-200059284.  Google Scholar

[11]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equation,, Commun. Pure Appl. Math., 41 (1988), 891.  doi: doi:10.1002/cpa.3160410704.  Google Scholar

[12]

J. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation,, Phil. Trans. Roy. Soc. London Ser. A, 278 (1975), 555.  doi: doi:10.1098/rsta.1975.0035.  Google Scholar

[13]

A. Moameni, Soliton solutions for quasilinear Schr$\ddoto$dinger equations involving supercritical exponent in $R^N$,, Communications on Pure and Applied Analysis, 7 (2008), 89.  doi: doi:10.3934/cpaa.2008.7.89.  Google Scholar

[14]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a dissipative non local source,, Communications on Pure and Applied Analysis, 7 (2008), 1077.  doi: doi:10.3934/cpaa.2008.7.1077.  Google Scholar

[15]

D. Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation,, Communications on Pure and Applied Analysis, 7 (2008), 867.  doi: doi:10.3934/cpaa.2008.7.867.  Google Scholar

[16]

K. Y. Wang, Global well-posedness for a transport equation with non-local velocity and critical diffusion,, Communications on Pure and Applied Analysis, 7 (2008), 1203.  doi: doi:10.3934/cpaa.2008.7.1203.  Google Scholar

[17]

C. L. He, D. X. Kong and K. F. Liu, Hyperbolic mean curvature flow,, J. Differential Equations, 246 (2009), 373.  doi: doi:10.1016/j.jde.2008.06.026.  Google Scholar

[1]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[2]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[3]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[4]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[7]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[10]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[13]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[14]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[15]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[18]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[19]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]