Citation: |
[1] |
D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.doi: doi:10.1081/PDE-120020499. |
[2] |
D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223. |
[3] |
G. Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat-conducting flow with symmetry and free boundary, Comm. Partial Differential Equations, 27 (2002), 907-943.doi: doi:10.1081/PDE-120020499. |
[4] |
G. Q. Chen, Vacuum states and global stability of rarefaction waves for compressible flow, Methods Appl. Anal., 7 (2000), 337-361. |
[5] |
P. Chen and T. Zhang, A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients, Commun. Pure Appl. Anal., 7 (2008), 987-1016.doi: doi:10.3934/cpaa.2008.7.987. |
[6] |
D. Y. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension, Commun. Pure Appl. Anal., 3 (2004), 675-694.doi: doi:10.3934/cpaa.2004.3.675. |
[7] |
D. Y. Fang and T. Zhang, A note on compressible Navier-Stokes equations with vacuum state in one dimension, Nonlinear Anal., 58 (2004), 719-731.doi: doi:10.1016/j.na.2004.05.016. |
[8] |
D. Y. Fang and T. Zhang, Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data, J. Differential Equations, 222 (2006), 63-94.doi: doi:10.1016/j.jde.2005.07.011. |
[9] |
Z. H. Guo, Q. S. Jiu and Z. P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39 (2008), 1402-1427.doi: doi:10.1137/070680333. |
[10] |
D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.doi: doi:10.1137/0151043. |
[11] |
D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow, Arch. Rational Mech. Anal., 114 (1991), 15-46.doi: doi:10.1007/BF00375683. |
[12] |
D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data, J. Differential Equations, 95 (1992), 33-74.doi: doi:10.1016/0022-0396(92)90042-L. |
[13] |
D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J., 41 (1992), 1225-1302.doi: doi:10.1512/iumj.1992.41.41060. |
[14] |
S. Jiang, Z. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods Appl. Anal., 12 (2005), 239-251. |
[15] |
S. Jiang and A. A. Zlotnik, Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 939-960.doi: doi:10.1017/S0308210500003565. |
[16] |
P.-L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. 1-2. Oxford University Press: New York, 1996, 1998. |
[17] |
T. P. Liu, Z. P. Xin and T. Yang, Vacuum states for compressible flow, Discrete Contin. Dynam. Systems, 4 (1998), 1-32. |
[18] |
A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation, Comm. Partial Differential Equations, 32 (2007), 431-452.doi: doi:10.1080/03605300600857079. |
[19] |
X. L. Qin, Z. A. Yao and H. X. Zhao, One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries, Comm. Pure Appl. Anal., 7 (2008), 373-381. |
[20] |
S. W. Vong, T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum(II), J. Differential Equations, 192 (2003), 475-501.doi: doi:10.1016/S0022-0396(03)00060-3. |
[21] |
V. A. Vaigant and A. V. Kazhikhov, On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscosity fluid, Siberian Math. J., 2 (1995), 1108-1141.doi: doi:10.1007/BF02106835. |
[22] |
Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.doi: doi:10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C. |
[23] |
T. Yang, Z. A. Yao and C. J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations, 26 (2001), 965-981.doi: doi:10.1081/PDE-100002385. |
[24] |
T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 230 (2002), 329-363.doi: doi:10.1007/s00220-002-0703-6. |
[25] |
T. Zhang and D. Y. Fang, Global behavior of spherically symmetric Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 236 (2007), 293-341.doi: doi:10.1016/j.jde.2007.01.025. |
[26] |
T. Zhang and D. Y. Fang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients, Arch. Ration. Mech. Anal., 191 (2009), 195-243.doi: doi:10.1007/s00205-008-0183-8. |
[27] |
T. Zhang and D. Y. Fang, A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, Nonlinear Analysis: Real World Applications, 10 (2009), 2272-2285.doi: doi:10.1016/j.nonrwa.2008.04.014. |