March  2011, 10(2): 541-559. doi: 10.3934/cpaa.2011.10.541

A singular limit in a nonlinear problem arising in electromagnetism

1. 

Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin

Received  February 2010 Revised  May 2010 Published  December 2010

This paper deals with a generally nonlinear mixed-type initial-boundary value problem for the description of the electromagnetic field in a conducting medium that is surrounded by an insulating medium with a high dielectric permittivity. The main goals are the existence, uniqueness and the asymptotic behavior of the solutions to this system.
Citation: Frank Jochmann. A singular limit in a nonlinear problem arising in electromagnetism. Communications on Pure & Applied Analysis, 2011, 10 (2) : 541-559. doi: 10.3934/cpaa.2011.10.541
References:
[1]

J. M. Ball, Strongly continuous semi groups, weak solutions and the variation of constants formula,, Proc. Amer. Math. Soc., 63 (1977), 370.   Google Scholar

[2]

J. W. Barrett and L. Prigozhin, Bean's critical-state model as the $p\rightarrow\infty$ limit of an evolutionary $p$-Laplace equation,, Nonlinear Anal., 42 (2000), 977.  doi: doi:10.1016/S0362-546X(99)00147-9.  Google Scholar

[3]

C. P. Bean, Magnetization of high-field superconductors,, Rev. Mod. Phys., 36 (1964), 31.  doi: doi:10.1103/RevModPhys.36.31.  Google Scholar

[4]

F. Jochmann, Existence of weak solutions to the drift-diffusion model for semiconductors coupled with Maxwell's equations,, J. Math. Anal. Appl., 204 (1996), 655.  doi: doi:10.1006/jmaa.1996.0460.  Google Scholar

[5]

F. Jochmann, A semi-static limit for Maxwell's equations in an exterior domain,, Comm. Part. Diff. Equations, 23 (1998), 2035.  doi: doi:10.1080/03605309808821410.  Google Scholar

[6]

F. Jochmann, Regularity of weak solutions to Maxwell's Equations with mixed boundary conditions,, Math. Meth. Appl. Sci., 22 (1999), 1255.  doi: doi:10.1002/(SICI)1099-1476(19990925)22:14<1255::AID-MMA83>3.0.CO;2-N.  Google Scholar

[7]

F. Jochmann, Energy decay of solutions to Maxwells equations with conductivity and polarization,, J. Diff. Equations, 203 (2004), 232.  doi: doi:10.1016/j.jde.2004.05.005.  Google Scholar

[8]

F. Jochmann, On a first-order hyperbolic systems including Bean's model for superconductors with displacement current,, J. Diff. Equations, 246 (2009), 2151.  doi: doi:10.1016/j.jde.2008.12.023.  Google Scholar

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", 2$^{nd}$ edition, ().   Google Scholar

[10]

R. Picard, An elementary proof for a compact embedding result in generalized electromagnetic theory,, Math. Z., 187 (1984), 151.  doi: doi:10.1007/BF01161700.  Google Scholar

[11]

C. Weber, A local compactness theorem for Maxwell's equations,, Math. Methods Appl. Sci., 2 (1980), 12.  doi: doi:10.1002/mma.1670020103.  Google Scholar

[12]

H. M. Yin, On a $p$-Laplacian type of evolution system and applications to Bean's model in the type-II superconductivity theory,, Quarterly. Appl. Math., 59 (2001), 47.   Google Scholar

[13]

H. M. Yin, On a singular limit problem for nonlinear Maxwell equations,, J. Diff. Equations, 156 (1999), 355.  doi: doi:10.1006/jdeq.1998.3608.  Google Scholar

[14]

H. M. Yin, B. Q. Li and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors,, Discrete Continuous Dynam. Systems - B, 8 (2002), 781.   Google Scholar

show all references

References:
[1]

J. M. Ball, Strongly continuous semi groups, weak solutions and the variation of constants formula,, Proc. Amer. Math. Soc., 63 (1977), 370.   Google Scholar

[2]

J. W. Barrett and L. Prigozhin, Bean's critical-state model as the $p\rightarrow\infty$ limit of an evolutionary $p$-Laplace equation,, Nonlinear Anal., 42 (2000), 977.  doi: doi:10.1016/S0362-546X(99)00147-9.  Google Scholar

[3]

C. P. Bean, Magnetization of high-field superconductors,, Rev. Mod. Phys., 36 (1964), 31.  doi: doi:10.1103/RevModPhys.36.31.  Google Scholar

[4]

F. Jochmann, Existence of weak solutions to the drift-diffusion model for semiconductors coupled with Maxwell's equations,, J. Math. Anal. Appl., 204 (1996), 655.  doi: doi:10.1006/jmaa.1996.0460.  Google Scholar

[5]

F. Jochmann, A semi-static limit for Maxwell's equations in an exterior domain,, Comm. Part. Diff. Equations, 23 (1998), 2035.  doi: doi:10.1080/03605309808821410.  Google Scholar

[6]

F. Jochmann, Regularity of weak solutions to Maxwell's Equations with mixed boundary conditions,, Math. Meth. Appl. Sci., 22 (1999), 1255.  doi: doi:10.1002/(SICI)1099-1476(19990925)22:14<1255::AID-MMA83>3.0.CO;2-N.  Google Scholar

[7]

F. Jochmann, Energy decay of solutions to Maxwells equations with conductivity and polarization,, J. Diff. Equations, 203 (2004), 232.  doi: doi:10.1016/j.jde.2004.05.005.  Google Scholar

[8]

F. Jochmann, On a first-order hyperbolic systems including Bean's model for superconductors with displacement current,, J. Diff. Equations, 246 (2009), 2151.  doi: doi:10.1016/j.jde.2008.12.023.  Google Scholar

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", 2$^{nd}$ edition, ().   Google Scholar

[10]

R. Picard, An elementary proof for a compact embedding result in generalized electromagnetic theory,, Math. Z., 187 (1984), 151.  doi: doi:10.1007/BF01161700.  Google Scholar

[11]

C. Weber, A local compactness theorem for Maxwell's equations,, Math. Methods Appl. Sci., 2 (1980), 12.  doi: doi:10.1002/mma.1670020103.  Google Scholar

[12]

H. M. Yin, On a $p$-Laplacian type of evolution system and applications to Bean's model in the type-II superconductivity theory,, Quarterly. Appl. Math., 59 (2001), 47.   Google Scholar

[13]

H. M. Yin, On a singular limit problem for nonlinear Maxwell equations,, J. Diff. Equations, 156 (1999), 355.  doi: doi:10.1006/jdeq.1998.3608.  Google Scholar

[14]

H. M. Yin, B. Q. Li and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors,, Discrete Continuous Dynam. Systems - B, 8 (2002), 781.   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[13]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[14]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]