March  2011, 10(2): 561-570. doi: 10.3934/cpaa.2011.10.561

The optimal weighted $W^{2, p}$ estimates of elliptic equation with non-compatible conditions

1. 

College of Science, Xi'an Jiaotong University, Xi'an, 710049, China

2. 

Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242

3. 

Department of Mathematics, Shanghai Jiaotong University, Shang hai 200240, China

Received  April 2010 Revised  August 2010 Published  December 2010

In this paper we study uniformly elliptic equations with non-compatible conditions, where $\Omega$ is a bounded Lipchitz domain, and the right-hand side term and the boundary value of the elliptic equations belong to $L^p (p \geq 2)$ space. Then the optimal weighted $W^{2, p}$ estimates will be given by Whitney decomposition and $L^p$ estimates of non-tangential maximal function associated to solutions of the elliptic equations.
Citation: Yi Cao, Dong Li, Lihe Wang. The optimal weighted $W^{2, p}$ estimates of elliptic equation with non-compatible conditions. Communications on Pure & Applied Analysis, 2011, 10 (2) : 561-570. doi: 10.3934/cpaa.2011.10.561
References:
[1]

B. E, J. Dahlberg, On the poisson integral for Lipschitz and $C^1$ domains,, Studia Math., 66 (1979), 13.   Google Scholar

[2]

B. E, J. Dahlberg, Harmonic functions in Lipschitz domains,, Proceedinds of Symposia in Pure Mathematics, XXXV, part 1 (1979), 319.   Google Scholar

[3]

B. E, J. Dahlberg, Weighted norm inequalities for the Lusin area integral and the non-tangential maximal functions for harmonic function in a Lipschitz domain,, Studia Math., 67 (1980), 297.   Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2$^{nd}$ edition, (1983).   Google Scholar

[5]

C. E. Kenig and Cora Sadosky, "Harmonic Analysis and Partial Differential Equations,", Chicago Lectures in Mathematics, (1999).   Google Scholar

[6]

E. M. Stein, "Singular Integrals and differentiability Properties of Functions,", Princeton University Press, (1970).   Google Scholar

show all references

References:
[1]

B. E, J. Dahlberg, On the poisson integral for Lipschitz and $C^1$ domains,, Studia Math., 66 (1979), 13.   Google Scholar

[2]

B. E, J. Dahlberg, Harmonic functions in Lipschitz domains,, Proceedinds of Symposia in Pure Mathematics, XXXV, part 1 (1979), 319.   Google Scholar

[3]

B. E, J. Dahlberg, Weighted norm inequalities for the Lusin area integral and the non-tangential maximal functions for harmonic function in a Lipschitz domain,, Studia Math., 67 (1980), 297.   Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2$^{nd}$ edition, (1983).   Google Scholar

[5]

C. E. Kenig and Cora Sadosky, "Harmonic Analysis and Partial Differential Equations,", Chicago Lectures in Mathematics, (1999).   Google Scholar

[6]

E. M. Stein, "Singular Integrals and differentiability Properties of Functions,", Princeton University Press, (1970).   Google Scholar

[1]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[6]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[9]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[10]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[11]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[12]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[15]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[16]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[18]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]