-
Previous Article
On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space
- CPAA Home
- This Issue
-
Next Article
The optimal weighted $W^{2, p}$ estimates of elliptic equation with non-compatible conditions
Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights
1. | College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China |
2. | Department of Mathematics, Tongji University, Shanghai, 200092, China |
3. | Department of Applied Mathematics, Xidian University, Xi'an, 710071, China |
$ -\Delta_N u-\mu \frac{1}{(|x|\log(\frac{R}{|x|}))^N}|u|^{N-2}u= \lambda V(x)|u|^{N-2} u + f(x,u), u\in W_0^{1, N}(\Omega), $
where $\Omega$ be a bounded domain containing $0$ in $R^N$, $N \geq 2, 0 < \mu < (\frac{N-1}{N})^N$, and the weight function $V(x)$ may change sign and has nontrivial positive part. Using Moser-Trudinger inequality and nonstandard linking structure introduced by Degiovanni and Lancelotti [6], we prove the existence of a nontrivial solution for any $\lambda\in R$.
References:
[1] |
Adimurthi, M. Ramaswamy and N. Chaudhuri, Improved Hardy-Sobolev inequality and its application,, Proceeding of the American Mathematical Society, 130 (2002), 489.
doi: doi:10.1090/S0002-9939-01-06132-9. |
[2] |
H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems,, Revista Mat. Univ. Complutense. Madrid, 10 (1997), 443.
|
[3] |
M. Cuesta, Eigenvalue problems for the p-laplacian with indefinite weights,, Electron. J. Differential Equations, 33 (2001), 1.
|
[4] |
J. M. do O, Semilinear Dirichlet problems for the N-Laplacian in $R^N$ with nonlinearities in critical growth range,, Differential Integral Equations, 9 (1996), 967.
|
[5] |
J. M. do O, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimensional two,, J. Math. Anal. Appl., 345 (2008), 286.
doi: doi:10.1016/j.jmaa.2008.03.074. |
[6] |
M. Degiovanni and S. Lancelotti, Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity,, Ann. I. H. Poincare-AN, 24 (2007), 907.
|
[7] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range,, Calc. Var. Partial Differential Equations, 3 (1995), 139.
doi: doi:10.1007/BF01205003. |
[8] |
E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems,, Invent. Math., 45 (1978), 139.
doi: doi:10.1007/BF01390270. |
[9] |
X. Fan and Z. Li, Linking and existence results for perturbations of the p-Laplacian,, Nonlinear Anal, 42 (2000), 1413.
doi: doi:10.1016/S0362-546X(99)00161-3. |
[10] |
J. P. Garcia and I. A. Peral, Hardy inequalities and some critical elliptic and parabolic problems,, J. Differential Equations, 144 (1998), 446.
|
[11] |
N. Ghoussoub, "Duality and Perturbation Methods in Critical Point Theory,", Cambridge Univ. Press, (1993).
doi: doi:10.1017/CBO9780511551703. |
[12] |
N. Ghoussoub and C. Yuan, Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents,, Trans. Amer. Math. Soc., 352 (2000), 5703.
doi: doi:10.1090/S0002-9947-00-02560-5. |
[13] |
J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (1970), 1077.
doi: doi:10.1512/iumj.1971.20.20101. |
[14] |
K. Perera and A. Szulkin, p-Laplacian problems where the nonlinearity crosses an eigenvalue,, Discrete Contin. Dyn. Syst., 13 (2005), 743.
doi: doi:10.3934/dcds.2005.13.743. |
[15] |
I. Peral and J. L. Vazquez, On the stability or instability of singular solutions with exponential reaction term,, Arch. Rational Mech. Anal., 129 (1995), 201.
doi: doi:10.1007/BF00383673. |
[16] |
Y. T. Shen, Y. X. Yao and Z. H. Chen, On a nonlinear elliptic problem with critical potential in R,, Science in China, 47 (2004), 741.
|
[17] |
A. Szulkin and M. Willem, Eigenvalue problems with indefinite weights,, Stud. Math., 135 (1999), 189.
|
[18] |
M. Willem, "Minimax Theorems,", Birkhauser, (1996).
|
[19] |
G. Zhang and S. Liu, On a class of elliptic equation with critical potential and indefinite weights in $R^2$,, Acta Mathematica Scientia, 28 (2008), 929.
|
show all references
References:
[1] |
Adimurthi, M. Ramaswamy and N. Chaudhuri, Improved Hardy-Sobolev inequality and its application,, Proceeding of the American Mathematical Society, 130 (2002), 489.
doi: doi:10.1090/S0002-9939-01-06132-9. |
[2] |
H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems,, Revista Mat. Univ. Complutense. Madrid, 10 (1997), 443.
|
[3] |
M. Cuesta, Eigenvalue problems for the p-laplacian with indefinite weights,, Electron. J. Differential Equations, 33 (2001), 1.
|
[4] |
J. M. do O, Semilinear Dirichlet problems for the N-Laplacian in $R^N$ with nonlinearities in critical growth range,, Differential Integral Equations, 9 (1996), 967.
|
[5] |
J. M. do O, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimensional two,, J. Math. Anal. Appl., 345 (2008), 286.
doi: doi:10.1016/j.jmaa.2008.03.074. |
[6] |
M. Degiovanni and S. Lancelotti, Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity,, Ann. I. H. Poincare-AN, 24 (2007), 907.
|
[7] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range,, Calc. Var. Partial Differential Equations, 3 (1995), 139.
doi: doi:10.1007/BF01205003. |
[8] |
E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems,, Invent. Math., 45 (1978), 139.
doi: doi:10.1007/BF01390270. |
[9] |
X. Fan and Z. Li, Linking and existence results for perturbations of the p-Laplacian,, Nonlinear Anal, 42 (2000), 1413.
doi: doi:10.1016/S0362-546X(99)00161-3. |
[10] |
J. P. Garcia and I. A. Peral, Hardy inequalities and some critical elliptic and parabolic problems,, J. Differential Equations, 144 (1998), 446.
|
[11] |
N. Ghoussoub, "Duality and Perturbation Methods in Critical Point Theory,", Cambridge Univ. Press, (1993).
doi: doi:10.1017/CBO9780511551703. |
[12] |
N. Ghoussoub and C. Yuan, Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents,, Trans. Amer. Math. Soc., 352 (2000), 5703.
doi: doi:10.1090/S0002-9947-00-02560-5. |
[13] |
J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (1970), 1077.
doi: doi:10.1512/iumj.1971.20.20101. |
[14] |
K. Perera and A. Szulkin, p-Laplacian problems where the nonlinearity crosses an eigenvalue,, Discrete Contin. Dyn. Syst., 13 (2005), 743.
doi: doi:10.3934/dcds.2005.13.743. |
[15] |
I. Peral and J. L. Vazquez, On the stability or instability of singular solutions with exponential reaction term,, Arch. Rational Mech. Anal., 129 (1995), 201.
doi: doi:10.1007/BF00383673. |
[16] |
Y. T. Shen, Y. X. Yao and Z. H. Chen, On a nonlinear elliptic problem with critical potential in R,, Science in China, 47 (2004), 741.
|
[17] |
A. Szulkin and M. Willem, Eigenvalue problems with indefinite weights,, Stud. Math., 135 (1999), 189.
|
[18] |
M. Willem, "Minimax Theorems,", Birkhauser, (1996).
|
[19] |
G. Zhang and S. Liu, On a class of elliptic equation with critical potential and indefinite weights in $R^2$,, Acta Mathematica Scientia, 28 (2008), 929.
|
[1] |
Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527 |
[2] |
Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191 |
[3] |
Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211 |
[4] |
J. Tyagi. Multiple solutions for singular N-Laplace equations with a sign changing nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2381-2391. doi: 10.3934/cpaa.2013.12.2381 |
[5] |
Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016 |
[6] |
M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703 |
[7] |
Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123 |
[8] |
José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 |
[9] |
Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126 |
[10] |
Patrizia Pucci, Raffaella Servadei. Nonexistence for $p$--Laplace equations with singular weights. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1421-1438. doi: 10.3934/cpaa.2010.9.1421 |
[11] |
Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061 |
[12] |
Melvin Faierman. Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1463-1483. doi: 10.3934/cpaa.2020074 |
[13] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[14] |
Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164 |
[15] |
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447 |
[16] |
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191 |
[17] |
Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033 |
[18] |
Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439 |
[19] |
Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565 |
[20] |
Chunhua Wang, Jing Yang. Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1603-1628. doi: 10.3934/dcds.2016.36.1603 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]