-
Previous Article
A comparison principle for a Sobolev gradient semi-flow
- CPAA Home
- This Issue
-
Next Article
The existence of weak solutions for a generalized Camassa-Holm equation
The obstacle problem for Monge-Ampère type equations in non-convex domains
1. | School of Mathematical Sciences, Beijing Normal University, China |
2. | School of Mathematical Sciences, Beijing Normal University, Beijing 100875 |
References:
[1] |
O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl., 76 (1997), 265.
doi: doi:10.1016/S0021-7824(97)89952-7. |
[2] |
J. Bao, The obstacle problems for second order fully nonlinear elliptic equations with Neumann boundary conditions,, J. Partial Diff. Eqn., 3 (1992), 33.
|
[3] |
L. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,", Mathematical Society Colloquium Publications, (1995).
|
[4] |
L. Caffarelli, A Localization property of viscosity solutions to the Monge-Ampere equation and their strict convexity,, Ann. of Math., 131 (1990), 129.
doi: doi:10.2307/1971509. |
[5] |
L. Caffarelli and R. McCann, Free boundaries in optimal transport and Monge-Ampère obstacle problems,, Ann. of Math., 171 (2010), 673.
|
[6] |
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampère equations,, Comm. Pure Appl. Math., 37 (1984), 369.
doi: doi:10.1002/cpa.3160370306. |
[7] |
M. Crandall, H. Ishii and P. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.
doi: doi:10.1090/S0273-0979-1992-00266-5. |
[8] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Diiferential Equations of Second Order," Second Edition,, Springer, (1983).
|
[9] |
B. Guan, The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature,, Trans. Amer. Math. Soc., 350 (1998), 4955.
doi: doi:10.1090/S0002-9947-98-02079-0. |
[10] |
B. Guan and Y. Y. Li, Monge-Ampère equations on Riemannian manifolds,, J. Diff. Eqn., 132 (1996), 126.
doi: doi:10.1006/jdeq.1996.0174. |
[11] |
B. Guan and J. Spruck, Boundary value problem on $\mathbbS^n$ for surfaces of constant Gauss curvature,, Ann. of Math., 138 (1993), 601.
doi: doi:10.2307/2946558. |
[12] |
C. Gutiérrez, "The Monge-Ampère equation,'', Progress in Nonlinear Differential Equations and their Applications, 44,, Birkh\, (2001).
|
[13] |
K. Lee, The obstacle problem for Monge-Ampère equation,, Comm. Partial Diff. Eqn., 26 (2001), 33.
doi: doi:10.1081/PDE-100002244. |
[14] |
Y. Y. Li, Some existence results of fully nonlinear elliptic equations of Monge-Ampère type,, Comm. Pure Appl. Math., 43 (1990), 233.
doi: doi:10.1002/cpa.3160430204. |
[15] |
X. N. Ma, N. S. Trudinger and X-J. Wang, Regularity of potential functions of the optimal transportation problem,, Arch. Rational Mech. Anal., 177 (2005), 151.
doi: doi:10.1007/s00205-005-0362-9. |
[16] |
O. Savin, The obstacle problem for Monge-Ampère equation,, Calc. Var. Partial Diff. Eqn., 22 (2005), 303.
doi: doi:10.1007/s00526-004-0275-8. |
[17] |
N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations,, Arch. Rational Mech. Anal., 111 (1990), 153.
doi: doi:10.1007/BF00375406. |
show all references
References:
[1] |
O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl., 76 (1997), 265.
doi: doi:10.1016/S0021-7824(97)89952-7. |
[2] |
J. Bao, The obstacle problems for second order fully nonlinear elliptic equations with Neumann boundary conditions,, J. Partial Diff. Eqn., 3 (1992), 33.
|
[3] |
L. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,", Mathematical Society Colloquium Publications, (1995).
|
[4] |
L. Caffarelli, A Localization property of viscosity solutions to the Monge-Ampere equation and their strict convexity,, Ann. of Math., 131 (1990), 129.
doi: doi:10.2307/1971509. |
[5] |
L. Caffarelli and R. McCann, Free boundaries in optimal transport and Monge-Ampère obstacle problems,, Ann. of Math., 171 (2010), 673.
|
[6] |
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampère equations,, Comm. Pure Appl. Math., 37 (1984), 369.
doi: doi:10.1002/cpa.3160370306. |
[7] |
M. Crandall, H. Ishii and P. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.
doi: doi:10.1090/S0273-0979-1992-00266-5. |
[8] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Diiferential Equations of Second Order," Second Edition,, Springer, (1983).
|
[9] |
B. Guan, The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature,, Trans. Amer. Math. Soc., 350 (1998), 4955.
doi: doi:10.1090/S0002-9947-98-02079-0. |
[10] |
B. Guan and Y. Y. Li, Monge-Ampère equations on Riemannian manifolds,, J. Diff. Eqn., 132 (1996), 126.
doi: doi:10.1006/jdeq.1996.0174. |
[11] |
B. Guan and J. Spruck, Boundary value problem on $\mathbbS^n$ for surfaces of constant Gauss curvature,, Ann. of Math., 138 (1993), 601.
doi: doi:10.2307/2946558. |
[12] |
C. Gutiérrez, "The Monge-Ampère equation,'', Progress in Nonlinear Differential Equations and their Applications, 44,, Birkh\, (2001).
|
[13] |
K. Lee, The obstacle problem for Monge-Ampère equation,, Comm. Partial Diff. Eqn., 26 (2001), 33.
doi: doi:10.1081/PDE-100002244. |
[14] |
Y. Y. Li, Some existence results of fully nonlinear elliptic equations of Monge-Ampère type,, Comm. Pure Appl. Math., 43 (1990), 233.
doi: doi:10.1002/cpa.3160430204. |
[15] |
X. N. Ma, N. S. Trudinger and X-J. Wang, Regularity of potential functions of the optimal transportation problem,, Arch. Rational Mech. Anal., 177 (2005), 151.
doi: doi:10.1007/s00205-005-0362-9. |
[16] |
O. Savin, The obstacle problem for Monge-Ampère equation,, Calc. Var. Partial Diff. Eqn., 22 (2005), 303.
doi: doi:10.1007/s00526-004-0275-8. |
[17] |
N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations,, Arch. Rational Mech. Anal., 111 (1990), 153.
doi: doi:10.1007/BF00375406. |
[1] |
Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015 |
[2] |
Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069 |
[3] |
Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705 |
[4] |
Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825 |
[5] |
Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991 |
[6] |
Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559 |
[7] |
Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221 |
[8] |
Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058 |
[9] |
Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053 |
[10] |
Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121 |
[11] |
Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060 |
[12] |
Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002 |
[13] |
Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447 |
[14] |
Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061 |
[15] |
Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347 |
[16] |
Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697 |
[17] |
Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019 |
[18] |
Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134 |
[19] |
Yoon Mo Jung, Taeuk Jeong, Sangwoon Yun. Non-convex TV denoising corrupted by impulse noise. Inverse Problems & Imaging, 2017, 11 (4) : 689-702. doi: 10.3934/ipi.2017032 |
[20] |
Tong Li, Jeungeun Park. Stability of traveling waves of models for image processing with non-convex nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 959-985. doi: 10.3934/cpaa.2018047 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]