-
Previous Article
New dissipated energy for the unstable thin film equation
- CPAA Home
- This Issue
-
Next Article
On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space
Breaking of resonance for elliptic problems with strong degeneration at infinity
1. | Università degli Studi del Molise, Dipartimento S.A.V.A., Facoltà di Ingegneria, Via Duca degli Abruzzi, 86039 Termoli (CB), Italy |
2. | Departamento de Matemáticas, U. Autónoma de Madrid, 28049 Madrid |
-div$(\frac{Du}{(1+u)^\theta})+|Du|^q =\lambda g(x)u +f$ in $\Omega,$
$u=0$ on $\partial \Omega, $
$u\geq 0$ in $\Omega,$
where $\Omega$ is a bounded open set of $R^n$, $1 < q \leq 2$,
$\theta\geq 0$, $f\in L^1(\Omega)$, and $f>0$.
The main feature is to show that even for large values of $\theta$
there is solution for all $\lambda>0$.
The problem could be seen as a reaction-diffusion model which produces a saturation effect,
that is, the diffusion goes to zero when $u$ go to infinity.
References:
[1] |
B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the $p$-laplacian with a critical potential,, Ann. Mat. Pura Appl., 182 (2003), 247.
doi: doi:10.1007/s10231-002-0064-y. |
[2] |
B. Abdellaoui, A. Dall'Aglio and I. Peral, Some Remarks on Elliptic Problems with Critical Growth in the Gradient,, J. Differential Equations, 222 (2006), 21.
doi: doi:10.1016/j.jde.2005.02.009. |
[3] |
B. Abdellaoui, I. Peral and A. Primo, Some elliptic problems with Hardy potential and critical growth in the gradient: non-resonance and blow-up results,, J. Differential Equations, 239 (2007), 386.
doi: doi:10.1016/j.jde.2007.05.010. |
[4] |
B. Abdellaoui, I. Peral and A. Primo, Breaking of resonance and regularizing effect of a first order quasi-linear term in some elliptic equations,, Ann. Inst. Henri Poincar\'e, 25 (2008), 969.
|
[5] |
N. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations wit data measures,, SIAM J. Math. Anal., 24 (1993), 23.
doi: doi:10.1137/0524002. |
[6] |
A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity,, Ann. Mat. Pura Appl., 182 (2003), 53.
doi: doi:10.1007/s10231-002-0056-y. |
[7] |
A. Alvino, V. Ferone and G. Trombetti, A priori estimates for a class of nonuniformly elliptic equations,, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 81.
|
[8] |
P. Baras and J. Goldstein, The heat equation with a singular potential,, Trans. Amer. Math. Soc., 294 (1984), 121.
doi: doi:10.1090/S0002-9947-1984-0742415-3. |
[9] |
P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.-L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Sc. Norm. Super. Pisa, 22 (1995), 241.
|
[10] |
L. Boccardo, Positive eigenfunctions for a class of quasi-linear operators,, Boll. Unione Mat. Ital., 18 (1981), 951.
|
[11] |
L. Boccardo, Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form,, in, (1994), 43.
|
[12] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM Control Optim. Calc. Var., 14 (2008), 411.
doi: doi:10.1051/cocv:2008031. |
[13] |
L. Boccardo, Quasilinear elliptic equations with natural growth terms: the regularizing effect of the lower order terms,, J. Nonlinear Convex Anal., 7 (2006), 355.
|
[14] |
L. Boccardo and H. Brezis, Some remarks on a class of elliptic equations with degenerate coercivity,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6 (2003), 521.
|
[15] |
L. Boccardo, A. Dall'Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity,, Dedicated to Prof. C. Vinti (Italian) (Perugia, 46 (1998), 51.
|
[16] |
L. Boccardo and T. Gallouet, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data,, Nonlinear Anal TMA, 19 (1992), 573.
doi: doi:10.1016/0362-546X(92)90022-7. |
[17] |
L. Boccardo, F. Murat and J. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Sc. Norm. Super. Pisa, 11 (1984), 213.
|
[18] |
L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving hardy potential,, Discrete and Continuous Dynamical Systems, 16 (2006), 513.
doi: doi:10.3934/dcds.2006.16.513. |
[19] |
H. Brezis and X. Cabré, Some simple nonlinear PDE's without solution,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (1998), 223.
|
[20] |
G. Croce, The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity,, Rend. Mat. Appl., 27 (2007), 299.
|
[21] |
F. Della Pietra and G. di Blasio, Comparison, existence and regularity results for a class of non-uniformly elliptic equations,, Differ. Equ. Appl., 2 (2010), 79.
|
[22] |
F. Della Pietra and G. di Blasio, Existence and comparison results for non-uniformly parabolic problems,, Mediterr. J. Math. 7 (2010), (2010), 323.
|
[23] |
J. García Azorero and I. Peral, Hardy inequalities and some critical elliptic and parabolic problems,, J. Differential Equations, 144 (1998), 441.
doi: doi:10.1006/jdeq.1997.3375. |
[24] |
A. Mercaldo and I. Peral, Existence results for semilinear elliptic equations with some lack of coercivity,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 569.
doi: doi:10.1017/S0308210506000126. |
[25] |
A. Mercaldo, I. Peral and A. Primo, Existence results for noncoercive nonlinear elliptic equations with Hardy potential,, To appear., (). Google Scholar |
[26] |
A. Perrotta and A. Primo, Breaking of resonance and regularizing effect of the gradient with the $p$-Laplacian Operator,, To appear in Advanced Nonlinear Studies., (). Google Scholar |
[27] |
M. M. Porzio and M. Pozio, Parabolic equations with non-linear, degenerate and space-time dependent operators,, J. Evol. Equ., 8 (2008), 31.
doi: doi:10.1007/s00028-007-0317-8. |
[28] |
P. Pucci and J. Serrin, The strong maximum principle revisited,, J. Differential Equations, 196 (2004), 1.
doi: doi:10.1016/j.jde.2003.05.001. |
[29] |
P. Pucci and J. Serrin, Erratum to The strong maximum principle revisited,, J. Differential Equations, 196 (2004), 1.
doi: doi:10.1016/j.jde.2004.09.002. |
[30] |
G. Stampacchia, Le problème de dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189.
|
show all references
References:
[1] |
B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the $p$-laplacian with a critical potential,, Ann. Mat. Pura Appl., 182 (2003), 247.
doi: doi:10.1007/s10231-002-0064-y. |
[2] |
B. Abdellaoui, A. Dall'Aglio and I. Peral, Some Remarks on Elliptic Problems with Critical Growth in the Gradient,, J. Differential Equations, 222 (2006), 21.
doi: doi:10.1016/j.jde.2005.02.009. |
[3] |
B. Abdellaoui, I. Peral and A. Primo, Some elliptic problems with Hardy potential and critical growth in the gradient: non-resonance and blow-up results,, J. Differential Equations, 239 (2007), 386.
doi: doi:10.1016/j.jde.2007.05.010. |
[4] |
B. Abdellaoui, I. Peral and A. Primo, Breaking of resonance and regularizing effect of a first order quasi-linear term in some elliptic equations,, Ann. Inst. Henri Poincar\'e, 25 (2008), 969.
|
[5] |
N. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations wit data measures,, SIAM J. Math. Anal., 24 (1993), 23.
doi: doi:10.1137/0524002. |
[6] |
A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity,, Ann. Mat. Pura Appl., 182 (2003), 53.
doi: doi:10.1007/s10231-002-0056-y. |
[7] |
A. Alvino, V. Ferone and G. Trombetti, A priori estimates for a class of nonuniformly elliptic equations,, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 81.
|
[8] |
P. Baras and J. Goldstein, The heat equation with a singular potential,, Trans. Amer. Math. Soc., 294 (1984), 121.
doi: doi:10.1090/S0002-9947-1984-0742415-3. |
[9] |
P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.-L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Sc. Norm. Super. Pisa, 22 (1995), 241.
|
[10] |
L. Boccardo, Positive eigenfunctions for a class of quasi-linear operators,, Boll. Unione Mat. Ital., 18 (1981), 951.
|
[11] |
L. Boccardo, Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form,, in, (1994), 43.
|
[12] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM Control Optim. Calc. Var., 14 (2008), 411.
doi: doi:10.1051/cocv:2008031. |
[13] |
L. Boccardo, Quasilinear elliptic equations with natural growth terms: the regularizing effect of the lower order terms,, J. Nonlinear Convex Anal., 7 (2006), 355.
|
[14] |
L. Boccardo and H. Brezis, Some remarks on a class of elliptic equations with degenerate coercivity,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6 (2003), 521.
|
[15] |
L. Boccardo, A. Dall'Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity,, Dedicated to Prof. C. Vinti (Italian) (Perugia, 46 (1998), 51.
|
[16] |
L. Boccardo and T. Gallouet, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data,, Nonlinear Anal TMA, 19 (1992), 573.
doi: doi:10.1016/0362-546X(92)90022-7. |
[17] |
L. Boccardo, F. Murat and J. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires,, Ann. Sc. Norm. Super. Pisa, 11 (1984), 213.
|
[18] |
L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving hardy potential,, Discrete and Continuous Dynamical Systems, 16 (2006), 513.
doi: doi:10.3934/dcds.2006.16.513. |
[19] |
H. Brezis and X. Cabré, Some simple nonlinear PDE's without solution,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (1998), 223.
|
[20] |
G. Croce, The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity,, Rend. Mat. Appl., 27 (2007), 299.
|
[21] |
F. Della Pietra and G. di Blasio, Comparison, existence and regularity results for a class of non-uniformly elliptic equations,, Differ. Equ. Appl., 2 (2010), 79.
|
[22] |
F. Della Pietra and G. di Blasio, Existence and comparison results for non-uniformly parabolic problems,, Mediterr. J. Math. 7 (2010), (2010), 323.
|
[23] |
J. García Azorero and I. Peral, Hardy inequalities and some critical elliptic and parabolic problems,, J. Differential Equations, 144 (1998), 441.
doi: doi:10.1006/jdeq.1997.3375. |
[24] |
A. Mercaldo and I. Peral, Existence results for semilinear elliptic equations with some lack of coercivity,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 569.
doi: doi:10.1017/S0308210506000126. |
[25] |
A. Mercaldo, I. Peral and A. Primo, Existence results for noncoercive nonlinear elliptic equations with Hardy potential,, To appear., (). Google Scholar |
[26] |
A. Perrotta and A. Primo, Breaking of resonance and regularizing effect of the gradient with the $p$-Laplacian Operator,, To appear in Advanced Nonlinear Studies., (). Google Scholar |
[27] |
M. M. Porzio and M. Pozio, Parabolic equations with non-linear, degenerate and space-time dependent operators,, J. Evol. Equ., 8 (2008), 31.
doi: doi:10.1007/s00028-007-0317-8. |
[28] |
P. Pucci and J. Serrin, The strong maximum principle revisited,, J. Differential Equations, 196 (2004), 1.
doi: doi:10.1016/j.jde.2003.05.001. |
[29] |
P. Pucci and J. Serrin, Erratum to The strong maximum principle revisited,, J. Differential Equations, 196 (2004), 1.
doi: doi:10.1016/j.jde.2004.09.002. |
[30] |
G. Stampacchia, Le problème de dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189.
|
[1] |
Martino Bardi, Gabriele Terrone. On the homogenization of some non-coercive Hamilton--Jacobi--Isaacs equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 207-236. doi: 10.3934/cpaa.2013.12.207 |
[2] |
Shu-Yu Hsu. Non-existence and behaviour at infinity of solutions of some elliptic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 769-786. doi: 10.3934/dcds.2004.10.769 |
[3] |
Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004 |
[4] |
Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841 |
[5] |
Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691 |
[6] |
Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983 |
[7] |
Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481 |
[8] |
Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201702i |
[9] |
Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165 |
[10] |
Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33. |
[11] |
Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675 |
[12] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[13] |
Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239 |
[14] |
Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155 |
[15] |
César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535 |
[16] |
Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517 |
[17] |
Sanjay Khattri. Another note on some quadrature based three-step iterative methods for non-linear equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 549-555. doi: 10.3934/naco.2013.3.549 |
[18] |
Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713 |
[19] |
Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure & Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030 |
[20] |
José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]