Advanced Search
Article Contents
Article Contents

On the collapsing sandpile problem

Abstract Related Papers Cited by
  • We are interested in the modeling of collapsing sandpiles. We use the collapsing model introduced by Evans, Feldman and Gariepy in [13], to provide a description of the phenomena in terms of a composition of projections onto interlocked convex sets around the set of stable sandpiles.
    Mathematics Subject Classification: Primary: 35K55, 65M60; Secondary: 35B40, 65K10.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Aronson, L. C. Evans and Y. Wu, Fast/Slow diffusion and growing sandpiles, J. Differential Equations, 131 (1996), 304-335.doi: doi:10.1006/jdeq.1996.0166.


    P. Bak, C. Tang and K. Weisenfeld, Self-organized criticality, Phys. Rev. A, 38 (1988), 364-378.doi: doi:10.1103/PhysRevA.38.364.


    J. W. Barrett and L. Prigozhin, Dual formulation in critical state problems, Interfaces and Free Boundaries, 8 (2006), 349-370.doi: doi:10.4171/IFB/147.


    Ph. Bénilan, M. G. Crandall and A. Pazy, "Evolution Equations Governed by Accretive Operators," Preprint book.


    Ph. Bénilan, L. C. Evans and R. F. Gariepy, On some singular limits of homogeneous semigroups, J. Evol. Equ., 3 (2003), 203-214.


    J. P. Bouchaud, M. E. Cates, J. Ravi Prakash and S. F. Edwards, A model for the Dynamic of Sandpile Surfaces, J. Phys. I France, 4 (1994), 1383-1410.


    G. Bouchitté, G. Buttazzo and P. Seppecher, Energies with respect to a Measure and Applications to Low Dimensional Structures, Calc. Var. Partial Differential Equations, 5 (1997), 37-54.


    H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (French), North-Holland Mathematics Studies, No. 5. Notas de Matemàtica (50). North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.


    S. Dumont and N. Igbida, On a Dual Formulation for the Growing Sandpile Problem, European Journal Applied Math., 20 (2009), 169-185.doi: doi:10.1017/S0956792508007754.


    I. Ekeland and R. Témam, "Convex Analysis and Variational Problems," Classics in Applied Mathematics, 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.


    L. C. Evans, Application of nonlinear semigroup theory to certain partial differential equations, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977), pp. 163-188,


    L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current developments in mathematics, 1997 (Cambridge, MA), 65-126, Int. Press, Boston, MA, 1999.


    L. C. Evans, M. Feldman and R. F. Gariepy, Fast/Slow diffusion and collapsing sandpiles, J. Differential Equations, 137 (1997), 166-209.doi: doi:10.1006/jdeq.1997.3243.


    L. C. Evans and F. Rezakhanlou, A stochastic model for sandpiles and its continum limit, Comm. Math. Phys., 197 (1998), 325-345.doi: doi:10.1007/s002200050453.


    N. IgbidaEquivalent formulations for Monge-Kantorovich equation, Submitted.


    L. Prigozhin, Variational model of sandpile growth, Euro. J. Appl. Math., 7 (1996), 225-236.doi: doi:10.1017/S0956792500002321.


    J. E. Roberts and J.-M. Thomas, "Mixed and Hybrid Methods," (P. G. Ciarlet and J. L. Lions eds.), Handbook of Numerical Analysis, vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1991.


    R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations," Mathematical Surveys and Monographs, 49, American Mathematical Society, Providence, RI, 1997.

  • 加载中

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint