\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the collapsing sandpile problem

Abstract Related Papers Cited by
  • We are interested in the modeling of collapsing sandpiles. We use the collapsing model introduced by Evans, Feldman and Gariepy in [13], to provide a description of the phenomena in terms of a composition of projections onto interlocked convex sets around the set of stable sandpiles.
    Mathematics Subject Classification: Primary: 35K55, 65M60; Secondary: 35B40, 65K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Aronson, L. C. Evans and Y. Wu, Fast/Slow diffusion and growing sandpiles, J. Differential Equations, 131 (1996), 304-335.doi: doi:10.1006/jdeq.1996.0166.

    [2]

    P. Bak, C. Tang and K. Weisenfeld, Self-organized criticality, Phys. Rev. A, 38 (1988), 364-378.doi: doi:10.1103/PhysRevA.38.364.

    [3]

    J. W. Barrett and L. Prigozhin, Dual formulation in critical state problems, Interfaces and Free Boundaries, 8 (2006), 349-370.doi: doi:10.4171/IFB/147.

    [4]

    Ph. Bénilan, M. G. Crandall and A. Pazy, "Evolution Equations Governed by Accretive Operators," Preprint book.

    [5]

    Ph. Bénilan, L. C. Evans and R. F. Gariepy, On some singular limits of homogeneous semigroups, J. Evol. Equ., 3 (2003), 203-214.

    [6]

    J. P. Bouchaud, M. E. Cates, J. Ravi Prakash and S. F. Edwards, A model for the Dynamic of Sandpile Surfaces, J. Phys. I France, 4 (1994), 1383-1410.

    [7]

    G. Bouchitté, G. Buttazzo and P. Seppecher, Energies with respect to a Measure and Applications to Low Dimensional Structures, Calc. Var. Partial Differential Equations, 5 (1997), 37-54.

    [8]

    H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (French), North-Holland Mathematics Studies, No. 5. Notas de Matemàtica (50). North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.

    [9]

    S. Dumont and N. Igbida, On a Dual Formulation for the Growing Sandpile Problem, European Journal Applied Math., 20 (2009), 169-185.doi: doi:10.1017/S0956792508007754.

    [10]

    I. Ekeland and R. Témam, "Convex Analysis and Variational Problems," Classics in Applied Mathematics, 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

    [11]

    L. C. Evans, Application of nonlinear semigroup theory to certain partial differential equations, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977), pp. 163-188,

    [12]

    L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current developments in mathematics, 1997 (Cambridge, MA), 65-126, Int. Press, Boston, MA, 1999.

    [13]

    L. C. Evans, M. Feldman and R. F. Gariepy, Fast/Slow diffusion and collapsing sandpiles, J. Differential Equations, 137 (1997), 166-209.doi: doi:10.1006/jdeq.1997.3243.

    [14]

    L. C. Evans and F. Rezakhanlou, A stochastic model for sandpiles and its continum limit, Comm. Math. Phys., 197 (1998), 325-345.doi: doi:10.1007/s002200050453.

    [15]

    N. IgbidaEquivalent formulations for Monge-Kantorovich equation, Submitted.

    [16]

    L. Prigozhin, Variational model of sandpile growth, Euro. J. Appl. Math., 7 (1996), 225-236.doi: doi:10.1017/S0956792500002321.

    [17]

    J. E. Roberts and J.-M. Thomas, "Mixed and Hybrid Methods," (P. G. Ciarlet and J. L. Lions eds.), Handbook of Numerical Analysis, vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1991.

    [18]

    R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations," Mathematical Surveys and Monographs, 49, American Mathematical Society, Providence, RI, 1997.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return