• Previous Article
    An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue
  • CPAA Home
  • This Issue
  • Next Article
    Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks
March  2011, 10(2): 687-700. doi: 10.3934/cpaa.2011.10.687

Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay

1. 

Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha, 410073, China, China

Received  January 2010 Revised  October 2010 Published  December 2010

In this paper, we consider the long time behavior of a non-autonomous parabolic PDE with a discrete state-dependent delay. We study the existence of compact kernel sections and unique complete trajectory of the corresponding problem. Furthermore, we obtain the (almost) periodic solution which attracts all solutions provided the time dependent terms are (almost) periodic with respect to time $t$.
Citation: Xiang Li, Zhixiang Li. Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay. Communications on Pure & Applied Analysis, 2011, 10 (2) : 687-700. doi: 10.3934/cpaa.2011.10.687
References:
[1]

W. Aiello, H. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math., 52 (1992), 855. doi: doi:10.1137/0152048. Google Scholar

[2]

Y. Cao, J. Fan and T. Gard, The effects of state-dependent time delay on a state-structured population grouwth model,, Nonlinear Anal. TMA, 19 (1992), 95. doi: doi:10.1016/0362-546X(92)90113-S. Google Scholar

[3]

F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays,, J. Comput. Anal. Math., 174 (2005), 201. doi: doi:10.1016/j.cam.2004.04.006. Google Scholar

[4]

R. Torrejón, Positive almost periodic solutions of a state-dependent delay nonlinear integral equation,, Nonlinear Anal. TMA, 20 (1993), 1383. doi: doi:10.1016/0362-546X(93)90167-Q. Google Scholar

[5]

H. Walther, The solution manifold and $C^1$-smoothness of solution operators for differential equations with state dependent delay,, J. Differential Equations, 195 (2003), 46. doi: doi:10.1016/j.jde.2003.07.001. Google Scholar

[6]

E. Hernóndez, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay,, Nonlinear Anal. RWA, 7 (2006), 510. doi: doi:10.1016/j.nonrwa.2005.03.014. Google Scholar

[7]

E. Hernóndez, M. Mckibben and H. Henriquez, Existence results for partial neutral functional differential equations with state-dependent delay,, Math. Comput. Modelling, 49 (2009), 1260. doi: doi:10.1016/j.mcm.2008.07.011. Google Scholar

[8]

E. Hernóndez, M. Pierri and G. Goncalves, Existence results for an impulsive abstact partial differenrial equation with state-dependent delay,, Comput. Math. Appl., 52 (2006), 411. doi: doi:10.1016/j.camwa.2006.03.022. Google Scholar

[9]

E. Hernóndez, R. Sakthivel and S. T. Aki, Existence results for impulsive evolution equation with state-dependent delay,, E. J. Differential Equations, 2008 (2008), 1. Google Scholar

[10]

A. Rezounenko and J. Wu, A non-local PDE model for population dynamics with state-selective : Local theory and global attractors,, J. Comput. Appl. Math., 190 (2006), 99. doi: doi:10.1016/j.cam.2005.01.047. Google Scholar

[11]

A. Rezounenko, Differential equations with discrete state dependent delay: uniqueness and well-posedness in the space of continuous functions,, Nonlinear Anal. TMA, 70 (2009), 3978. doi: doi:10.1016/j.na.2008.08.006. Google Scholar

[12]

A. Rezounenko, Partial differential equations with disctete and distributed state-dependent delays,, J. Math. Anal. Appl., 326 (2007), 1031. doi: doi:10.1016/j.jmaa.2006.03.049. Google Scholar

[13]

A. Rezounenko, On a class of P.D.E.s with nonlinear distirbuted in space and time state-dependent delay terms,, Mathematics Methods in the Applied sciences, 31 (2008), 1569. doi: doi:10.1002/mma.986. Google Scholar

[14]

A. Rezounenko, Non-linear partial differential equations with discrete state-dependent delays in a metric space,, Nonlinear Anal., 73 (2010), 1707. doi: doi:10.1016/j.na.2010.05.005. Google Scholar

[15]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics,", AMS Providence, (2001). Google Scholar

[16]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", Springer-verlag, (1996). Google Scholar

[17]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Defferential Equations,", Applied Mathematical Sciences, (1983). Google Scholar

[18]

M. Mackey and L. Glass, Oscillation and chaos in physiological control system,, Science, 197 (1977), 287. doi: doi:10.1126/science.267326. Google Scholar

[19]

K. Gopalsamy, M. Kulenovi and G. Ladas, Oscillations and global attractivity in models of hematopoiesis,, J. Dynamics and Differential Equations, 2 (1990), 117. doi: doi:10.1007/BF01057415. Google Scholar

[20]

K. Gopalsamy, S. Trofimchuk and N. Bantsur, A note on global attractivity in models of hematopoiesis,, Ukrainian Mathematical J., 50 (1998), 3. doi: doi:10.1007/BF02514684. Google Scholar

[21]

X. Wang and Z. Li, Dynamics for a class of general Hematopoiesis model with periodic coefficients,, Appl. Math. and Comput., 186 (2007), 460. doi: doi:10.1016/j.amc.2006.07.109. Google Scholar

[22]

X. Wang and Z. Li, Global attractivity, oscillation and Hopf bifurcation for a class of diffusive hematopoiesis models,, Cent. Eur. J. Math., 5 (2007), 397. doi: doi:10.2478/s11533-006-0042-5. Google Scholar

show all references

References:
[1]

W. Aiello, H. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math., 52 (1992), 855. doi: doi:10.1137/0152048. Google Scholar

[2]

Y. Cao, J. Fan and T. Gard, The effects of state-dependent time delay on a state-structured population grouwth model,, Nonlinear Anal. TMA, 19 (1992), 95. doi: doi:10.1016/0362-546X(92)90113-S. Google Scholar

[3]

F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays,, J. Comput. Anal. Math., 174 (2005), 201. doi: doi:10.1016/j.cam.2004.04.006. Google Scholar

[4]

R. Torrejón, Positive almost periodic solutions of a state-dependent delay nonlinear integral equation,, Nonlinear Anal. TMA, 20 (1993), 1383. doi: doi:10.1016/0362-546X(93)90167-Q. Google Scholar

[5]

H. Walther, The solution manifold and $C^1$-smoothness of solution operators for differential equations with state dependent delay,, J. Differential Equations, 195 (2003), 46. doi: doi:10.1016/j.jde.2003.07.001. Google Scholar

[6]

E. Hernóndez, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay,, Nonlinear Anal. RWA, 7 (2006), 510. doi: doi:10.1016/j.nonrwa.2005.03.014. Google Scholar

[7]

E. Hernóndez, M. Mckibben and H. Henriquez, Existence results for partial neutral functional differential equations with state-dependent delay,, Math. Comput. Modelling, 49 (2009), 1260. doi: doi:10.1016/j.mcm.2008.07.011. Google Scholar

[8]

E. Hernóndez, M. Pierri and G. Goncalves, Existence results for an impulsive abstact partial differenrial equation with state-dependent delay,, Comput. Math. Appl., 52 (2006), 411. doi: doi:10.1016/j.camwa.2006.03.022. Google Scholar

[9]

E. Hernóndez, R. Sakthivel and S. T. Aki, Existence results for impulsive evolution equation with state-dependent delay,, E. J. Differential Equations, 2008 (2008), 1. Google Scholar

[10]

A. Rezounenko and J. Wu, A non-local PDE model for population dynamics with state-selective : Local theory and global attractors,, J. Comput. Appl. Math., 190 (2006), 99. doi: doi:10.1016/j.cam.2005.01.047. Google Scholar

[11]

A. Rezounenko, Differential equations with discrete state dependent delay: uniqueness and well-posedness in the space of continuous functions,, Nonlinear Anal. TMA, 70 (2009), 3978. doi: doi:10.1016/j.na.2008.08.006. Google Scholar

[12]

A. Rezounenko, Partial differential equations with disctete and distributed state-dependent delays,, J. Math. Anal. Appl., 326 (2007), 1031. doi: doi:10.1016/j.jmaa.2006.03.049. Google Scholar

[13]

A. Rezounenko, On a class of P.D.E.s with nonlinear distirbuted in space and time state-dependent delay terms,, Mathematics Methods in the Applied sciences, 31 (2008), 1569. doi: doi:10.1002/mma.986. Google Scholar

[14]

A. Rezounenko, Non-linear partial differential equations with discrete state-dependent delays in a metric space,, Nonlinear Anal., 73 (2010), 1707. doi: doi:10.1016/j.na.2010.05.005. Google Scholar

[15]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics,", AMS Providence, (2001). Google Scholar

[16]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", Springer-verlag, (1996). Google Scholar

[17]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Defferential Equations,", Applied Mathematical Sciences, (1983). Google Scholar

[18]

M. Mackey and L. Glass, Oscillation and chaos in physiological control system,, Science, 197 (1977), 287. doi: doi:10.1126/science.267326. Google Scholar

[19]

K. Gopalsamy, M. Kulenovi and G. Ladas, Oscillations and global attractivity in models of hematopoiesis,, J. Dynamics and Differential Equations, 2 (1990), 117. doi: doi:10.1007/BF01057415. Google Scholar

[20]

K. Gopalsamy, S. Trofimchuk and N. Bantsur, A note on global attractivity in models of hematopoiesis,, Ukrainian Mathematical J., 50 (1998), 3. doi: doi:10.1007/BF02514684. Google Scholar

[21]

X. Wang and Z. Li, Dynamics for a class of general Hematopoiesis model with periodic coefficients,, Appl. Math. and Comput., 186 (2007), 460. doi: doi:10.1016/j.amc.2006.07.109. Google Scholar

[22]

X. Wang and Z. Li, Global attractivity, oscillation and Hopf bifurcation for a class of diffusive hematopoiesis models,, Cent. Eur. J. Math., 5 (2007), 397. doi: doi:10.2478/s11533-006-0042-5. Google Scholar

[1]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 47-66. doi: 10.3934/dcdss.2020003

[2]

Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137

[3]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[4]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

[5]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

[6]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[7]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[8]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[9]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[10]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[11]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[12]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[13]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[14]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[15]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[16]

Matthias Büger, Marcus R.W. Martin. Stabilizing control for an unbounded state-dependent delay equation. Conference Publications, 2001, 2001 (Special) : 56-65. doi: 10.3934/proc.2001.2001.56

[17]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[18]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167

[19]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[20]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]