\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A comparison principle for a Sobolev gradient semi-flow

Abstract / Introduction Related Papers Cited by
  • We consider gradient descent equations for energy functionals of the type $S(u) = \frac{1}{2} < u(x), A(x)u(x)>_{L^2} + \int_{\Omega} V(x,u) dx$, where $A$ is a uniformly elliptic operator of order 2, with smooth coefficients. The gradient descent equation for such a functional depends on the metric under consideration.
        We consider the steepest descent equation for $S$ where the gradient is an element of the Sobolev space $H^{\beta}$, $\beta \in (0,1)$, with a metric that depends on $A$ and a positive number $\gamma >$sup$|V_{2 2}|$. We prove a weak comparison principle for such a gradient flow.
        We extend our methods to the case where $A$ is a fractional power of an elliptic operator, and provide an application to the Aubry-Mather theory for partial differential equations and pseudo-differential equations by finding plane-like minimizers of the energy functional.
    Mathematics Subject Classification: Primary: 35B50, 46N20; Secondary: 35J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Bochner, Diffusion equation and stochastic processes, Proc. Nat. Acad. Sci. U. S. A., 35 (1949), 368-370.doi: doi:10.1073/pnas.35.7.368.

    [2]

    L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.doi: doi:10.1002/cpa.20274.

    [3]

    X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.doi: doi:10.1002/cpa.20093.

    [4]

    E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25-43.

    [5]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Classics in Mathematics. Springer-Verlag, Berlin, 2001.

    [6]

    M. Haase, "The Functional Calculus for Sectorial Operators," volume 169 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2006.

    [7]

    T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad., 36 (1960), 94-96.doi: doi:10.3792/pja/1195524082.

    [8]

    O. A. Ladyzhenskaya and N. N. Uraltseva, "Linear and Quasilinear Elliptic Equations," Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York, 1968.

    [9]

    A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems," Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.

    [10]

    R. de la Llave and E. Valdinoci, A generalization of aubry-mather theory to partial differential equations and pseudo-differential equations, Annales de l'Institut Henri Poincare C Non Linear Analysis, 26 (2009), 1309-1344.

    [11]

    C. Martínez Carracedo and M. Sanz Alix, "The Theory of Fractional Powers of Operators," volume 187 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 2001.

    [12]

    M. Miklavčič, "Applied Functional Analysis and Partial Differential Equations," World Scientific Publishing Co. Inc., River Edge, NJ, 1998.

    [13]

    J. Moser, A rapidly convergent iteration method and non-linear partial differential equations. I, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 265-315.

    [14]

    J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272.

    [15]

    J. Moser, A stability theorem for minimal foliations on a torus, Ergodic Theory Dynam. Systems, $8^*$(Charles Conley Memorial Issue) (1988), 251-281.

    [16]

    J. W. Neuberger, "Sobolev Gradients and Differential Equations," volume 1670 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1997.

    [17]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.

    [18]

    M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Prentice-Hall Inc., Englewood Cliffs, N.J., 1967.

    [19]

    R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations," volume 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997.

    [20]

    M. A. Shubin, "Pseudodifferential Operators and Spectral Theory," Springer-Verlag, Berlin, second edition, 2001. Translated from the 1978 Russian original by Stig I. Andersson.

    [21]

    E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.

    [22]

    M. E. Taylor, "Partial differential equations. I," volume 115 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996.

    [23]

    M. E. Taylor, "Partial Differential Equations. III," volume 117 of Applied Mathematical Sciences. Springer-Verlag, New York, 1997.

    [24]

    I. I. Vrabie, "$C_0$-semigroups and Applications," volume 191 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 2003.

    [25]

    K. Yosida, "Functional Analysis," Springer-Verlag, New York, fourth edition, 1974.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return