Citation: |
[1] |
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and aplications, J. Functional Analysis, 14 (1973), 349-381.doi: doi:10.1016/0022-1236(73)90051-7. |
[2] |
H. Berestycki and P. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. |
[3] |
H. Berestycki and P. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.doi: doi:10.1007/BF00250556. |
[4] |
V. Benci and D. Fortunato, The nonlinear Klein-Gordon equation coupled with the Maxwell equations, Nonlinear Anal., 47 (2001), 6065-6072.doi: doi:10.1016/S0362-546X(01)00688-5. |
[5] |
V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.doi: doi:10.1142/S0129055X02001168. |
[6] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: doi:10.1002/cpa.3160360405. |
[7] |
D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal., 58 (2004), 733-747.doi: doi:10.1016/j.na.2003.05.001. |
[8] |
T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schröinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.doi: doi:10.1017/S030821050000353X. |
[9] |
T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. |
[10] |
P. d'Avenia, L. Pisani and G. Siciliano, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems, Nonlinear Anal., 71 (2009), 1985-1995.doi: doi:10.1016/j.na.2009.02.111. |
[11] |
P. d'Avenia, L. Pisani, and G. Siciliano, Klein-Gordon-Maxwell systems in a bounded domain, Discrete Contin. Dyn. Syst., 26 (2010), 135-149. |
[12] |
V. Georgiev and N. Visciglia, Solitary waves for Klein-Gordon-Maxwell system with external Coulomb potential, J. Math. Pures Appl., 84 (2005), 957-983.doi: doi:10.1016/j.matpur.2004.09.016. |
[13] |
D. Mugnai, Coupled Klein-Gordon and Born-Infeld-type equations: looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1519-1527. |
[14] |
O. Miyagaki, On a class of semilinear elliptic problems in $R^N$ with critical growth, Nonlinear Anal., 29 (1997), 773-781.doi: doi:10.1016/S0362-546X(96)00087-9. |
[15] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.doi: doi:10.1007/BF02418013. |
[16] |
M. Willem, "Minimax Theorems," Birkh鋟ser Boston, Inc., Boston, MA, 1996. |