$ \rho (|x|) \frac{\partial u}{\partial t}- \sum_{i=1}^N D_i(u^{m-1}|D_i u|^{\lambda -1}D_i u)+g(u)+lu=f(x)$ (1)
or, after the change $v=u^{\sigma}$, $\sigma =\frac{m+\lambda -1}{\lambda }, $ of equation
$\rho (|x|) \frac{\partial v^{\frac{1}{ \sigma }}}{\partial t}-\sigma ^{-\lambda }\sum_{i=1} ^N D_i(|D_i v|^{\lambda -1}D_i v)+g(v^{\frac{1}{\sigma }}) +lv^{\frac{1}{ \sigma }}=f(x),$ (1')
in unbounded domain $R_+\times R^N,$ where the term $g(s)$ is supposed to satisfy just a lower polynomial growth condition and $g'(s) > -l_1$. The existence of the solution in $ L^{1+1/\sigma}(0, T; L^{1+1/\sigma}(R^N))\cap L^{\lambda +1}(0, T; W^{1,\lambda +1}(R^N))$ is proved. Also, under some condition on $g(s)$ and $u_0$ is shown a nonexistence of the solution.
Citation: |
[1] |
N. Ahmed and D. K. Sunada, Nonlinear flows in porous media, J. Hydraulics. Div. Proc. Amer. Soc. Civil Eng., 95 (1969), 1847-1857. |
[2] |
D. Blanchard and G. A. Francfort, Study of double nonlinear heat equation with no growth assumptions on the parabolic term, SIAM J. Math. Anal., 19 (1988), 1032-1056.doi: doi:10.1137/0519070. |
[3] |
S. P. Degtyarev and A. F. Tedeev, $L_1-L_\infty$- estimates of solutions of the Cauchy problem for an anisotropic degenerate parabolic equation with double non-linearity and growing initial data, Sb. Math., 198 (2007), 639-660.doi: doi:10.1070/SM2007v198n05ABEH003853. |
[4] |
J. R. Esteban and J. L. Vazquez, Homogeneous diffusion in $R$ with power-like nonlinear diffusivity, Arch. Rational Mech. Anal., 103 (1988), 39-80.doi: doi:10.1007/BF00292920. |
[5] |
V. Kalantarov and O. A. Ladyzhenskaya, The occurence of collapse for quasilinear equation of parabolic and hyperbolic types, J. Sov. Math., 10 (1978), 53-70.doi: doi:10.1007/BF01109723. |
[6] |
H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u) $, Arch. Rational Mech. Anal., 51 (1973), 371-386.doi: doi:10.1007/BF00263041. |
[7] |
J. L. Lions, "Quelques Methodes de Resolution des Problemes aux Limites Nonlineaires," Dunod, Gauthier Villars, Paris, 1969. |
[8] |
J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications," Springer-Verlag, New York, 1972. |
[9] |
A. V. Martynenko, and A. F. Tedeev, The Cauchy problem for a quasilinear parabolic equation with a source and nonhomogeneous density, Comput. Math. Math. Phys., 47 (2007), 238-248.doi: doi:10.1134/S096554250702008X. |
[10] |
E. Novruzov, On blow-up of solution of nonhomogeneous polytropic equation with source, Nonlinear Anal., 71 (2009), 3992-3998.doi: doi:10.1016/j.na.2009.02.069. |
[11] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.doi: doi:10.1007/BF02761595. |
[12] |
P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Diff. Equ., 150 (1998), 203-214.doi: doi:10.1006/jdeq.1998.3477. |
[13] |
G. Reyes and J. L. Vázquez, The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions, Communications on Pure and Applied Analysis, 7 (2008), 1275-1294.doi: doi:10.3934/cpaa.2008.7.1275. |
[14] |
A. F. Tedeev, Conditions for the time global existence and nonexistence of a compact support of solutions to the Cauchy problem for quasilinear degenerate parabolic equations, Siberian Math.J., 45 (2004), 155-164.doi: doi:10.1023/B:SIMJ.0000013021.66528.b6. |
[15] |
A. F. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Applicable Analysis, 86 (2007), 755-782.doi: doi:10.1080/00036810701435711. |
[16] |
M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, JMMA, 132 (1988), 187-212. |
[17] |
Z. Xiang, Ch. Mu and X. Hu, Support properties of solutions to a degenerate equation with absorption and variable density, Nonlinear Anal., 68 (2008), 1940-1953.doi: doi:10.1016/j.na.2007.01.021. |
[18] |
Y. Zhou, Global nonexistence for a quasilinear evolution equation with a general Lewis function, J. for Analysis and its Applications, 24 (2005), 179-187. |