\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The maximal number of interior peak solutions concentrating on hyperplanes for a singularly perturbed Neumann problem

Abstract Related Papers Cited by
  • We consider the following singularly perturbed elliptic problem

    $\varepsilon^2 \Delta u-u+f(u)=0, u>0 $ in $B_1$,

    $\frac{\partial u}{\partial \nu}=0 $ on $\partial B_1,$

    where $\Delta = \sum_{i=1}^N \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator, $B_1$ is the unit ball centered at the origin in $R^N$ $(N\ge 3)$, $\nu$ denotes the unit outer normal to $\partial B_1$, $\varepsilon > 0$ is a constant, and $f$ is a superlinear, subcritical nonlinearity . We will show that when $\e$ is sufficiently small there exists a solution with K interior peaks located on a hyperplane, where $1\le K \varepsilon\frac{C}{(\varepsilon)^{N-1}}$ with $C$ a positive constant depending on $N$ and $f$ only. As a consequence, we obtain that there exists at least $[\frac{C}{(\varepsilon)^{N-1}}]$ number of solutions for $\varepsilon$ sufficiently small.

    Mathematics Subject Classification: Primary: 35B40, 35B45; Secondary: 35J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, A. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Comm. Math. Phys, 235 (2003), 427-466.doi: doi:10.1007/s00220-003-0811-y.

    [2]

    A. Ambrosetti, A. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part II, Indiana Univ. Math. J, 53 (2004), 297-329.doi: doi:10.1512/iumj.2004.53.2400.

    [3]

    W. Ao, M. Musso and J. Wei, On spikes concentrating on line-segments to a semilinear Neumann problem, preprint 2010.

    [4]

    P. Bates, E. N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Diff. Eqns, 4 (1999), 1-69.

    [5]

    P. Bates and G. Fusco, Equilibria with many nuclei for the Cahn-Hilliard equation, J. Diff. Eqns, 160 (2000), 283-356.doi: doi:10.1006/jdeq.1999.3660.

    [6]

    M. del Pino and D. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J., 48 (1999), 883-898.doi: doi:10.1512/iumj.1999.48.1596.

    [7]

    M. del Pino, P. Felmer and J. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal., 31 (1999), 63-79.doi: doi:10.1137/S0036141098332834.

    [8]

    M. del Pino, P. Felmer and J. Wei, On the role of distance function in some singularly perturbed problems, Comm. P.D.E., 25 (2000), 155-177.doi: doi:10.1080/03605300008821511.

    [9]

    M. del Pino, P. Felmer and J. Wei, Multiple-peak solutions for some singular perturbation problems, Cal. Var. P.D.E., 10 (2000), 119-134.doi: doi:10.1007/s005260050147.

    [10]

    E. N. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific. J. Math., 189 (1999), 241-262.doi: doi:10.2140/pjm.1999.189.241.

    [11]

    B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^N$, in "Mathematical Analysis and Applications," Part A, Adv. Math. Suppl. Studies, Vol. 7A, pp.369-402, Academic Press, New York, 1981.

    [12]

    R. Gardner and L. A. Peletier, The set of positive solutions of semilinear equations in large balls, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 53-72.

    [13]

    C. Gui and J. Wei, Multiple interior spike solutions for some singularly perturbed Neumann problems, J. Diff. Eqns., 158 (1999), 1-27.doi: doi:10.1016/S0022-0396(99)80016-3.

    [14]

    C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math., 52 (2000), 522-538.doi: doi:10.4153/CJM-2000-024-x.

    [15]

    C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 47-82.

    [16]

    Y. Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. P.D.E., 23 (1998), 487-545.doi: doi:10.1080/03605309808821354.

    [17]

    Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490.doi: doi:10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.0.CO;2-Z.

    [18]

    C. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eqns., 72 (1988), 1-27.doi: doi:10.1016/0022-0396(88)90147-7.

    [19]

    F.-H. Lin, W.-M. Ni and J. Wei, On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60 (2007), 252-281.doi: doi:10.1002/cpa.20139.

    [20]

    A. Malchiodi, Solutions concentrating at curves for some singularly perturbed elliptic problems, C. R. Math. Acad. Sci. Paris, 338 (2004), 775-780.doi: doi:10.1016/j.crma.2004.03.023.

    [21]

    A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., 55 (2002), 1507-1568.doi: doi:10.1002/cpa.10049.

    [22]

    A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.doi: doi:10.1215/S0012-7094-04-12414-5.

    [23]

    A. Malchiodi, W.-M. Ni and J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 143-163.

    [24]

    W.-M. Ni and I. Takagi, On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41 (1991), 819-851.doi: doi:10.1002/cpa.3160440705.

    [25]

    W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.doi: doi:10.1215/S0012-7094-93-07004-4.

    [26]

    W.-M. Ni, I. Takagi and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J., 94 (1998), 597-618.doi: doi:10.1215/S0012-7094-98-09424-8.

    [27]

    W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.doi: doi:10.1002/cpa.3160480704.

    [28]

    Yang Wang, Concentration phenomena of solutions for some singularly perturbed elliptic equations, J. Math. Anal. Appl., 331 (2007) 927-946.doi: doi:10.1016/j.jmaa.2006.09.029.

    [29]

    J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problems, J. Diff. Eqns., 129 (1996), 315-333.doi: doi:10.1006/jdeq.1996.0120.

    [30]

    J. Wei, On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Diff. Eqns., 134 (1997), 104-133.doi: doi:10.1006/jdeq.1996.3218.

    [31]

    J. Wei, On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J., 50 (1998), 159-178.doi: doi:10.2748/tmj/1178224971.

    [32]

    J. Wei, On the effect of the domain geometry in singular perturbatation problems, Diff. Int. Eqns., 13 (2000), 15-45.

    [33]

    J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 459-492.

    [34]

    J. Wei and M. Winter, Multi-peak solutions for a wide class of singular perturbation problems, J. London Math. Soc., 59 (1999), 585-606.doi: doi:10.1112/S002461079900719X.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return