March  2011, 10(2): 745-760. doi: 10.3934/cpaa.2011.10.745

The heat kernel and Heisenberg inequalities related to the Kontorovich-Lebedev transform

1. 

Department of Mathematics, Faculty of Sciences, University of Porto, Campo Alegre st., 687, Porto, 4169-007, Portugal

Received  June 2010 Revised  October 2010 Published  December 2010

We introduce a notion of the heat kernel related to the familiar Kontorovich-Lebedev transform. We study differential and semigroup properties of this kernel and construct fundamental solutions of a generalized diffusion equation. An integral transformation with the heat kernel is considered. By using the Plancherel $L_2$-theory for the Kontorovich-Lebedev transform and norm estimates for its convolution we establish analogs of the classical Heisenberg inequality and uncertainty principle for this transformation. The proof is also based on the norm inequalities for the Mellin transform of the heat kernel.
Citation: Semyon Yakubovich. The heat kernel and Heisenberg inequalities related to the Kontorovich-Lebedev transform. Communications on Pure and Applied Analysis, 2011, 10 (2) : 745-760. doi: 10.3934/cpaa.2011.10.745
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," Dover, New York, 1972.

[2]

R. Ma, Heisenberg inequalities for Jacobi transforms, J. Math. Anal. Appl., 332 (2007), 155-163. doi: doi:10.1016/j.jmaa.2006.09.044.

[3]

E. H. Lieb and M. Loss, "Analysis," Graduate Studies in Math., Vol. 14, American Math. Soc., Providence, Rhode Island, 2001.

[4]

C. Monthus and A. Comtet, On the flux distribution in a one dimensional disordered system, J. Phys. I France, 4 (1994), 635-653.

[5]

A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series, Vol. I: Elementary Functions," Gordon and Breach, New York and London, 1986.

[6]

A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series, Vol. II: Special Functions," Gordon and Breach, New York and London, 1986.

[7]

I. N. Sneddon, "The Use of Integral Transforms," McGraw-Hill, New York, 1972.

[8]

S. B. Yakubovich and Yu. F. Luchko, "The Hypergeometric Approach to Integral Transforms and Convolutions," (Kluwers Ser. Math. and Appl.: Vol. 287), Dordrecht, Boston, London, 1994.

[9]

S. B. Yakubovich, "Index Transforms," World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1996.

[10]

S. B. Yakubovich, On the Kontorovich-Lebedev transformation, J. of Integral Equations and Appl., 15 (2003), 95-112. doi: doi:10.1216/jiea/1181074947.

[11]

S. B. Yakubovich, Integral transforms of the Kontorovich-Lebedev convolution type, Collect. Math., 54 (2003), 99-110.

[12]

S. B. Yakubovich, Boundedness and inversion properties of certain convolution transforms, J. Korean Math. Soc., 40 (2003), 999-1014. doi: doi:10.4134/JKMS.2003.40.6.999.

[13]

S. B. Yakubovich, On the least values of $L_p$-norms for the Kontorovich-Lebedev transform and its convolution, J. of Approximation Theory, 131 (2004), 231-242. doi: doi:10.1016/j.jat.2004.10.007.

[14]

S. B. Yakubovich, The Kontorovich-Lebedev transformation on Sobolev type spaces, Sarajevo J. of Mathematics, 1 (2005), 211-234.

[15]

S. B. Yakubovich, On a testing -function space for distributions associated with the Kontorovich-Lebedev transform, Collect. Math., 57 (2006), 279-293.

[16]

S. B. Yakubovich, Uncertainty principles for the Kontorovich-Lebedev transform, Math. Modelling and Analysis, 13 (2008), 289-302. doi: doi:10.3846/1392-6292.2008.13.289-302.

[17]

S. B. Yakubovich, A class of polynomials and discrete transformations associated with the Kontorovich-Lebedev operators, Integral Transforms and Special Functions, 20 (2009), 551-567. doi: doi:10.1080/10652460802648473.

[18]

S. B. Yakubovich and R. Daher, An analog of Morgan's theorem for the Kontorovich-Lebedev transform, Adv. Pure Apll. Math., 1:2 (2010), 159-162. doi: doi:10.1515/APAM.2010.010.

[19]

A. H. Zemanian, The Kontorovich-Lebedev transformation on distributions of compact support and its inversion, Math. Proc. Cambridge Philos. Soc., 77 (1975), 139-143. doi: doi:10.1017/S0305004100049471.

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," Dover, New York, 1972.

[2]

R. Ma, Heisenberg inequalities for Jacobi transforms, J. Math. Anal. Appl., 332 (2007), 155-163. doi: doi:10.1016/j.jmaa.2006.09.044.

[3]

E. H. Lieb and M. Loss, "Analysis," Graduate Studies in Math., Vol. 14, American Math. Soc., Providence, Rhode Island, 2001.

[4]

C. Monthus and A. Comtet, On the flux distribution in a one dimensional disordered system, J. Phys. I France, 4 (1994), 635-653.

[5]

A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series, Vol. I: Elementary Functions," Gordon and Breach, New York and London, 1986.

[6]

A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series, Vol. II: Special Functions," Gordon and Breach, New York and London, 1986.

[7]

I. N. Sneddon, "The Use of Integral Transforms," McGraw-Hill, New York, 1972.

[8]

S. B. Yakubovich and Yu. F. Luchko, "The Hypergeometric Approach to Integral Transforms and Convolutions," (Kluwers Ser. Math. and Appl.: Vol. 287), Dordrecht, Boston, London, 1994.

[9]

S. B. Yakubovich, "Index Transforms," World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1996.

[10]

S. B. Yakubovich, On the Kontorovich-Lebedev transformation, J. of Integral Equations and Appl., 15 (2003), 95-112. doi: doi:10.1216/jiea/1181074947.

[11]

S. B. Yakubovich, Integral transforms of the Kontorovich-Lebedev convolution type, Collect. Math., 54 (2003), 99-110.

[12]

S. B. Yakubovich, Boundedness and inversion properties of certain convolution transforms, J. Korean Math. Soc., 40 (2003), 999-1014. doi: doi:10.4134/JKMS.2003.40.6.999.

[13]

S. B. Yakubovich, On the least values of $L_p$-norms for the Kontorovich-Lebedev transform and its convolution, J. of Approximation Theory, 131 (2004), 231-242. doi: doi:10.1016/j.jat.2004.10.007.

[14]

S. B. Yakubovich, The Kontorovich-Lebedev transformation on Sobolev type spaces, Sarajevo J. of Mathematics, 1 (2005), 211-234.

[15]

S. B. Yakubovich, On a testing -function space for distributions associated with the Kontorovich-Lebedev transform, Collect. Math., 57 (2006), 279-293.

[16]

S. B. Yakubovich, Uncertainty principles for the Kontorovich-Lebedev transform, Math. Modelling and Analysis, 13 (2008), 289-302. doi: doi:10.3846/1392-6292.2008.13.289-302.

[17]

S. B. Yakubovich, A class of polynomials and discrete transformations associated with the Kontorovich-Lebedev operators, Integral Transforms and Special Functions, 20 (2009), 551-567. doi: doi:10.1080/10652460802648473.

[18]

S. B. Yakubovich and R. Daher, An analog of Morgan's theorem for the Kontorovich-Lebedev transform, Adv. Pure Apll. Math., 1:2 (2010), 159-162. doi: doi:10.1515/APAM.2010.010.

[19]

A. H. Zemanian, The Kontorovich-Lebedev transformation on distributions of compact support and its inversion, Math. Proc. Cambridge Philos. Soc., 77 (1975), 139-143. doi: doi:10.1017/S0305004100049471.

[1]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[2]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[3]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[4]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[5]

Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems and Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111

[6]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[7]

Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177

[8]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[9]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[10]

Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems and Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243

[11]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[12]

Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems and Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373

[13]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[14]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[15]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[16]

Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems and Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599

[17]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[18]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[19]

Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005

[20]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (352)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]