-
Previous Article
A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: some numerical evidence
- CPAA Home
- This Issue
-
Next Article
The heat kernel and Heisenberg inequalities related to the Kontorovich-Lebedev transform
On the accuracy of invariant numerical schemes
1. | LEPTIAB, Université de La Rochelle, Avenue Michel Crépeau, 17000 La Rochelle, France, France |
References:
[1] |
M. I. Bakirova, V. A. Doronitsyn and R. V. Kozlov, Symmetry-preserving differences schemes for some heat transfer equations,, J. Phys. A: Math. Gen., 30 (1997), 8139.
|
[2] |
T. J. Bridges, Multi-symplectic structures and wave propagation,, Math. Proc. Cambridge Philos. Soc., 121 (1997), 147.
doi: doi:10.1017/S0305004196001429. |
[3] |
C. J. Budd and V. A. Dorodnitsyn, Symmetry adapted moving mesh schemes for the nonlinear Schrödinger equation,, J. Phys., (2001), 10387.
|
[4] |
C. J. Budd and M. Piggott, Geometric integration and its applications,, in, (2000), 35.
|
[5] |
C. J. Budd and G. J. Collins, Symmetry based numerical methods for partial differential equations,, Numerical analysis, 380 (1998), 16.
|
[6] |
M. P. Calvo and E. Hairer, Accurate long-term integration of dynamical systems,, Journal of Applied Mathematics, 18 (1995), 95.
|
[7] |
É. Cartan, "La Méthode du Repère Mobile, La Théorie des Groupes Continues,", et Les Espaces G\'en\'eralis\'es, 5 (1935).
|
[8] |
J-B. Chen, H. Y. Guo and K. Wu, Discrete total variation calculus and Lee's discrete mechanics,, Applied Mathematics and Computation, (2006), 226.
doi: doi:10.1016/j.amc.2005.11.002. |
[9] |
J-B. Chen and M. Z. Qin, Multisymplectic composition integrators of high orders,, J. Comput. Math, (2003), 647.
|
[10] |
J-B. Chen, M. Z. Qin and Y-F Tang, Symplectic and multisymplectic methods for the nonlinear Schrödinger equation,, Comput. Math. Appl., 43 (2002), 1095.
doi: doi:10.1016/S0898-1221(02)80015-3. |
[11] |
J-B. Chen, Total variation in discrete multisymplectic field and multisymplectic-energy-momentum integrators,, Letters in Mathematical Physics, (2002), 63.
doi: doi:10.1023/A:1020269203008. |
[12] |
M. Chhay and A. Hamdouni, A new construction for invariant numerical schemes using moving frames,, C. R. Acad. Sci. Mecanique, 338 (2010), 97. Google Scholar |
[13] |
G. Cicogna, A discussion on the different Notions of symmetry of differential equations,, Proceedings of Institute of Mathematics of NAS of Ukraine, 50 (2004), 77.
|
[14] |
A. S. Dawes, Invariant numerical methods,, Int. Journ. for Numer. Meth. in Fluids, 56 (2008), 1185.
doi: doi:10.1002/fld.1749. |
[15] |
V. A. Dorodnitsyn, Finite-difference models entirely inheriting continuous symmetry of original differential equations,, International Journal of Modern Physics C, 5 (1994), 723.
|
[16] |
V. A. Dorodnitsyn, Some new invariant difference equations on evolutionary grids,, IMACS World Congress of Computational and Applied Mathematics, (1994). Google Scholar |
[17] |
V. A. Dorodnitsyn, Continious symmetries of finite-difference evolution equations and grids,, Proceedings of Workshop on Symmetries and Integrability of Difference Equations, (1996), 103.
|
[18] |
V. A. Dorodnitsyn, Group theoretical methods for finite difference modeling,, Proceedings of the First World Congress of Nonlinear Analysts, (1996), 979.
|
[19] |
M. Fels and P. J. Olver, Moving coframes I. a practical algorithm,, Acta Appl. Math., 51 (1998), 161.
doi: doi:10.1023/A:1005878210297. |
[20] |
M. Fels and P. J. Olver, Moving coframes II. regularization and theoritical foundations,, Acta Appl. Math., 55 (1999), 127.
doi: doi:10.1023/A:1006195823000. |
[21] |
Z. Ge and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators,, Physics Letters A, (1988), 134.
doi: doi:10.1016/0375-9601(88)90773-6. |
[22] |
M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism,, Mechanics, (1991), 203.
|
[23] |
M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations II: Space + Time decomposition,, Diff. Geom. Appl., 1 (1991), 375.
doi: doi:10.1016/0926-2245(91)90014-Z. |
[24] |
E. Hairer, Variable time step integration with symplectic methods,, Applied Numerical Mathematics: Transactions of IMACS, 25 (1997), 219.
doi: doi:10.1016/S0168-9274(97)00061-5. |
[25] |
E. Hairer and C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-preserving Algorithms for Ordinary Differential Equations,", Springer-Verlag, (2002).
|
[26] |
E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations,", Springer-Verlag - 2nd Ed., (1993).
|
[27] |
E. Hoarau, C. David, P. Sagaut and T. H. Le, Lie group stability of finite difference schemes,, Discrete and continuous dynamical systems, (2007), 1.
|
[28] |
N. H. Ibragimov, "CRC Handbook of Lie Group Analysis of Differential Equations, Vol. I: Symmetries, Exact Solutions, and Conservation Laws,", CRCC Press: Boca Raton, (1994).
|
[29] |
C. Kane, J. E. Marsden and M. Ortiz, Symplectic energy-momentum integrators,, J. Math. Phys., (1999), 3353.
doi: doi:10.1063/1.532892. |
[30] |
C. Kane, J. E. Marsden, M. Ortiz and M. West, Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems,, International Journal for Numerical Methods in Engineering, (2000), 1295.
doi: doi:10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W. |
[31] |
P. Kim, Invariantization of numerical schemes using moving frames,, BIT Numerical Mathematics, 47 (2007), 525.
doi: doi:10.1007/s10543-007-0138-8. |
[32] |
P. Kim, Invariantization of the Crank Nicolson method for Burgers equation,, Physica D: Nonlinear Phenomena, 237 (2008), 243.
doi: doi:10.1016/j.physd.2007.09.001. |
[33] |
A. Lew, J. E. Marsden, M. Ortiz and M. West, Asynchronous variational integrators,, Archive for Rational Mechanics and Analysis, (2003), 85.
doi: doi:10.1007/s00205-002-0212-y. |
[34] |
A. Lew, J. E. Marsden, M. Ortiz and M. West, "Variational Time Integrators,", International Journal for Numerical Methods in Engineering, (2003).
|
[35] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", \textbf{17}, 17 (1999).
|
[36] |
J. E. Marsden, G. W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs,, Communication in Mathematical Physics, (1998), 351.
doi: http://dx.doi.org/10.1007/s002200050505. |
[37] |
J. E. Marsden and S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves,, Math. Proc. Camb. Phil. Soc., (1999), 553.
doi: doi:10.1017/S0305004198002953. |
[38] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, (2001), 357.
|
[39] |
J. E. Marsden, S. Pekarsky, S. Shkoller and M. West, Variational methods, multisymplectic geometry and continuum mechanics,, J. Geom. Phys., (2001), 253.
doi: doi:10.1016/S0393-0440(00)00066-8. |
[40] |
B. E. Moore and S. Reich, Multi-symplectic integration methods for Hamiltonian PDEs,, Future Gener. Comput. Syst., 19 (2003), 395.
doi: doi:10.1016/S0167-739X(02)00166-8. |
[41] |
P. J. Olver, Moving frames,, J. Symb. Comp., 3 (2003), 501.
doi: doi:10.1016/S0747-7171(03)00092-0. |
[42] |
P. J. Olver, The concise handbook of algebra Lie groups and differential equations,, Kluwer Acad. Publ. 2002, (2002), 92. Google Scholar |
[43] |
P. J. Olver., "Applpications of Lie Groups to Differential Equations,", 2nd, (1993).
|
[44] |
G. R. W. Quispel and C. Dyt, Solving ODE's numerically while preserving symmetries, Hamiltonian structure, phase space volume or first integrals,, Proceedings IMALS, 2 (1997), 601. Google Scholar |
[45] |
J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: an overview,, Acta Numerica, 1 (1992), 243.
doi: doi:10.1017/S0962492900002282. |
[46] |
J. C. Simo and N. Tarnow and K. K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics,, Computer Methods in Applied Mechanics and Engineering, (1992), 63.
doi: doi:10.1016/0045-7825(92)90115-Z. |
[47] |
Y. I. Shokin, "The Method of Differential Approximation,", Springer-Verlag, (1983).
|
[48] |
N. N. Yanenko and Yu. Shokin, Group classification of difference schemes for a system of one-dimensional equations of gaz dynamics,, Amer. Math. Soc. Transl., 104 (1976), 259.
|
show all references
References:
[1] |
M. I. Bakirova, V. A. Doronitsyn and R. V. Kozlov, Symmetry-preserving differences schemes for some heat transfer equations,, J. Phys. A: Math. Gen., 30 (1997), 8139.
|
[2] |
T. J. Bridges, Multi-symplectic structures and wave propagation,, Math. Proc. Cambridge Philos. Soc., 121 (1997), 147.
doi: doi:10.1017/S0305004196001429. |
[3] |
C. J. Budd and V. A. Dorodnitsyn, Symmetry adapted moving mesh schemes for the nonlinear Schrödinger equation,, J. Phys., (2001), 10387.
|
[4] |
C. J. Budd and M. Piggott, Geometric integration and its applications,, in, (2000), 35.
|
[5] |
C. J. Budd and G. J. Collins, Symmetry based numerical methods for partial differential equations,, Numerical analysis, 380 (1998), 16.
|
[6] |
M. P. Calvo and E. Hairer, Accurate long-term integration of dynamical systems,, Journal of Applied Mathematics, 18 (1995), 95.
|
[7] |
É. Cartan, "La Méthode du Repère Mobile, La Théorie des Groupes Continues,", et Les Espaces G\'en\'eralis\'es, 5 (1935).
|
[8] |
J-B. Chen, H. Y. Guo and K. Wu, Discrete total variation calculus and Lee's discrete mechanics,, Applied Mathematics and Computation, (2006), 226.
doi: doi:10.1016/j.amc.2005.11.002. |
[9] |
J-B. Chen and M. Z. Qin, Multisymplectic composition integrators of high orders,, J. Comput. Math, (2003), 647.
|
[10] |
J-B. Chen, M. Z. Qin and Y-F Tang, Symplectic and multisymplectic methods for the nonlinear Schrödinger equation,, Comput. Math. Appl., 43 (2002), 1095.
doi: doi:10.1016/S0898-1221(02)80015-3. |
[11] |
J-B. Chen, Total variation in discrete multisymplectic field and multisymplectic-energy-momentum integrators,, Letters in Mathematical Physics, (2002), 63.
doi: doi:10.1023/A:1020269203008. |
[12] |
M. Chhay and A. Hamdouni, A new construction for invariant numerical schemes using moving frames,, C. R. Acad. Sci. Mecanique, 338 (2010), 97. Google Scholar |
[13] |
G. Cicogna, A discussion on the different Notions of symmetry of differential equations,, Proceedings of Institute of Mathematics of NAS of Ukraine, 50 (2004), 77.
|
[14] |
A. S. Dawes, Invariant numerical methods,, Int. Journ. for Numer. Meth. in Fluids, 56 (2008), 1185.
doi: doi:10.1002/fld.1749. |
[15] |
V. A. Dorodnitsyn, Finite-difference models entirely inheriting continuous symmetry of original differential equations,, International Journal of Modern Physics C, 5 (1994), 723.
|
[16] |
V. A. Dorodnitsyn, Some new invariant difference equations on evolutionary grids,, IMACS World Congress of Computational and Applied Mathematics, (1994). Google Scholar |
[17] |
V. A. Dorodnitsyn, Continious symmetries of finite-difference evolution equations and grids,, Proceedings of Workshop on Symmetries and Integrability of Difference Equations, (1996), 103.
|
[18] |
V. A. Dorodnitsyn, Group theoretical methods for finite difference modeling,, Proceedings of the First World Congress of Nonlinear Analysts, (1996), 979.
|
[19] |
M. Fels and P. J. Olver, Moving coframes I. a practical algorithm,, Acta Appl. Math., 51 (1998), 161.
doi: doi:10.1023/A:1005878210297. |
[20] |
M. Fels and P. J. Olver, Moving coframes II. regularization and theoritical foundations,, Acta Appl. Math., 55 (1999), 127.
doi: doi:10.1023/A:1006195823000. |
[21] |
Z. Ge and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators,, Physics Letters A, (1988), 134.
doi: doi:10.1016/0375-9601(88)90773-6. |
[22] |
M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism,, Mechanics, (1991), 203.
|
[23] |
M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations II: Space + Time decomposition,, Diff. Geom. Appl., 1 (1991), 375.
doi: doi:10.1016/0926-2245(91)90014-Z. |
[24] |
E. Hairer, Variable time step integration with symplectic methods,, Applied Numerical Mathematics: Transactions of IMACS, 25 (1997), 219.
doi: doi:10.1016/S0168-9274(97)00061-5. |
[25] |
E. Hairer and C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-preserving Algorithms for Ordinary Differential Equations,", Springer-Verlag, (2002).
|
[26] |
E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations,", Springer-Verlag - 2nd Ed., (1993).
|
[27] |
E. Hoarau, C. David, P. Sagaut and T. H. Le, Lie group stability of finite difference schemes,, Discrete and continuous dynamical systems, (2007), 1.
|
[28] |
N. H. Ibragimov, "CRC Handbook of Lie Group Analysis of Differential Equations, Vol. I: Symmetries, Exact Solutions, and Conservation Laws,", CRCC Press: Boca Raton, (1994).
|
[29] |
C. Kane, J. E. Marsden and M. Ortiz, Symplectic energy-momentum integrators,, J. Math. Phys., (1999), 3353.
doi: doi:10.1063/1.532892. |
[30] |
C. Kane, J. E. Marsden, M. Ortiz and M. West, Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems,, International Journal for Numerical Methods in Engineering, (2000), 1295.
doi: doi:10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W. |
[31] |
P. Kim, Invariantization of numerical schemes using moving frames,, BIT Numerical Mathematics, 47 (2007), 525.
doi: doi:10.1007/s10543-007-0138-8. |
[32] |
P. Kim, Invariantization of the Crank Nicolson method for Burgers equation,, Physica D: Nonlinear Phenomena, 237 (2008), 243.
doi: doi:10.1016/j.physd.2007.09.001. |
[33] |
A. Lew, J. E. Marsden, M. Ortiz and M. West, Asynchronous variational integrators,, Archive for Rational Mechanics and Analysis, (2003), 85.
doi: doi:10.1007/s00205-002-0212-y. |
[34] |
A. Lew, J. E. Marsden, M. Ortiz and M. West, "Variational Time Integrators,", International Journal for Numerical Methods in Engineering, (2003).
|
[35] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", \textbf{17}, 17 (1999).
|
[36] |
J. E. Marsden, G. W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs,, Communication in Mathematical Physics, (1998), 351.
doi: http://dx.doi.org/10.1007/s002200050505. |
[37] |
J. E. Marsden and S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves,, Math. Proc. Camb. Phil. Soc., (1999), 553.
doi: doi:10.1017/S0305004198002953. |
[38] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, (2001), 357.
|
[39] |
J. E. Marsden, S. Pekarsky, S. Shkoller and M. West, Variational methods, multisymplectic geometry and continuum mechanics,, J. Geom. Phys., (2001), 253.
doi: doi:10.1016/S0393-0440(00)00066-8. |
[40] |
B. E. Moore and S. Reich, Multi-symplectic integration methods for Hamiltonian PDEs,, Future Gener. Comput. Syst., 19 (2003), 395.
doi: doi:10.1016/S0167-739X(02)00166-8. |
[41] |
P. J. Olver, Moving frames,, J. Symb. Comp., 3 (2003), 501.
doi: doi:10.1016/S0747-7171(03)00092-0. |
[42] |
P. J. Olver, The concise handbook of algebra Lie groups and differential equations,, Kluwer Acad. Publ. 2002, (2002), 92. Google Scholar |
[43] |
P. J. Olver., "Applpications of Lie Groups to Differential Equations,", 2nd, (1993).
|
[44] |
G. R. W. Quispel and C. Dyt, Solving ODE's numerically while preserving symmetries, Hamiltonian structure, phase space volume or first integrals,, Proceedings IMALS, 2 (1997), 601. Google Scholar |
[45] |
J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: an overview,, Acta Numerica, 1 (1992), 243.
doi: doi:10.1017/S0962492900002282. |
[46] |
J. C. Simo and N. Tarnow and K. K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics,, Computer Methods in Applied Mechanics and Engineering, (1992), 63.
doi: doi:10.1016/0045-7825(92)90115-Z. |
[47] |
Y. I. Shokin, "The Method of Differential Approximation,", Springer-Verlag, (1983).
|
[48] |
N. N. Yanenko and Yu. Shokin, Group classification of difference schemes for a system of one-dimensional equations of gaz dynamics,, Amer. Math. Soc. Transl., 104 (1976), 259.
|
[1] |
Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018 |
[2] |
Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23 |
[3] |
Lili Ju, Xinfeng Liu, Wei Leng. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1667-1687. doi: 10.3934/dcdsb.2014.19.1667 |
[4] |
T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217 |
[5] |
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517 |
[6] |
Frank D. Grosshans, Jürgen Scheurle, Sebastian Walcher. Invariant sets forced by symmetry. Journal of Geometric Mechanics, 2012, 4 (3) : 271-296. doi: 10.3934/jgm.2012.4.271 |
[7] |
Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473 |
[8] |
Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323 |
[9] |
Philipp Bader, Sergio Blanes, Fernando Casas, Mechthild Thalhammer. Efficient time integration methods for Gross-Pitaevskii equations with rotation term. Journal of Computational Dynamics, 2019, 6 (2) : 147-169. doi: 10.3934/jcd.2019008 |
[10] |
Francesco C. De Vecchi, Andrea Romano, Stefania Ugolini. A symmetry-adapted numerical scheme for SDEs. Journal of Geometric Mechanics, 2019, 11 (3) : 325-359. doi: 10.3934/jgm.2019018 |
[11] |
Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977 |
[12] |
Shuang Liu, Xinfeng Liu. Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 141-159. doi: 10.3934/dcdsb.2019176 |
[13] |
Domokos Szász. Algebro-geometric methods for hard ball systems. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 427-443. doi: 10.3934/dcds.2008.22.427 |
[14] |
Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220 |
[15] |
Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453 |
[16] |
Xavier Ros-Oton, Joaquim Serra. Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2131-2150. doi: 10.3934/dcds.2015.35.2131 |
[17] |
Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81 |
[18] |
Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001 |
[19] |
Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312 |
[20] |
Ahmad Deeb, A. Hamdouni, Dina Razafindralandy. Comparison between Borel-Padé summation and factorial series, as time integration methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 393-408. doi: 10.3934/dcdss.2016003 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]