May  2011, 10(3): 831-846. doi: 10.3934/cpaa.2011.10.831

Inertial manifolds for stochastic pde with dynamical boundary conditions

1. 

Institut für Mathematik, University of Paderborn, 33098 Paderborn, Germany, Germany

Received  April 2009 Revised  October 2009 Published  December 2010

In this article we investigate the dynamics of stochastic partial differential equations with dynamical boundary conditions. We prove that such a problem with Lipschitz continuous non--linearity generates a random dynamical system. The main result is to show that this random dynamical system has an inertial manifold. Under additional assumptions on the non--linearity this manifold is differentiable.
Citation: Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831
References:
[1]

H. Amann and J. Escher, Strongly continuous dual semigroups,, Ann. Mat. Pura Appl., 171 (1996), 41.  doi: doi:10.1007/BF01759381.  Google Scholar

[2]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[3]

A. F. Bennett and P. E. Kloeden, The dissipative quasigeostrophic equations,, Mathematika, 28 (1982), 265.  doi: doi:10.1112/S0025579300010329.  Google Scholar

[4]

P. Brune, "Inertiale Mannigfaltigkeiten von stochastischen PDE's mit dynamischen Randbedingungen,", Diplomarbeit, (2006).   Google Scholar

[5]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Multivalued non-autonomous and random dynamical systems, pullback and random attractors, functional stochastic equations, conjugacy method., Submitted., ().   Google Scholar

[6]

C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions,", Springer-Verlag, (1977).   Google Scholar

[7]

S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces,, J. Differential Equations, 74 (1988), 285.  doi: doi:10.1016/0022-0396(88)90007-1.  Google Scholar

[8]

S.-N. Chow, K. Lu, and G. R. Sell, Smoothness of inertial manifolds,, J. Math. Anal. Appl., 169 (1992), 283.  doi: doi:10.1016/0022-247X(92)90115-T.  Google Scholar

[9]

I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions,, Discrete Contin. Dyn. Syst., 18 (2007), 315.  doi: doi:10.3934/dcds.2007.18.315.  Google Scholar

[10]

I. D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems,", AKTA, (2002).   Google Scholar

[11]

I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dynam. Differential Equations, 13 (2001), 355.  doi: doi:10.1023/A:1016684108862.  Google Scholar

[12]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," volume 44 of Encyclopedia of Mathematics and its Applications,, Cambridge University Press, (1992).   Google Scholar

[13]

J. Duan, K. Lu, and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations,, Ann. Probab., 31 (2003), 2109.  doi: doi:10.1214/aop/1068646380.  Google Scholar

[14]

J. Duan, K. Lu, and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations,, J. Dynam. Differential Equations, 16 (2004), 949.  doi: doi:10.1007/s10884-004-7830-z.  Google Scholar

[15]

J. Escher, A note on quasilinear parabolic systems with dynamical boundary conditions,, In, (1992), 138.   Google Scholar

[16]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions,, Comm. Partial Differential Equations, 18 (1993), 1309.  doi: doi:10.1080/03605309308820976.  Google Scholar

[17]

G. Francois, Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions,, Asymptot. Anal., 46 (2006), 43.   Google Scholar

[18]

M. J. Garrido Atienza, K. Lu, and B. Schmalfuß, Unstable manifolds for a stochastic partial differential equation driven by a fractional Brownian motion,, Manuscript., ().   Google Scholar

[19]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations,, J. Differential Equations, 236 (2007), 460.  doi: doi:10.1016/j.jde.2006.09.024.  Google Scholar

[20]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," volume 143 of Applied Mathematical Sciences,, Springer-Verlag, (2002).   Google Scholar

[21]

T. Wanner, Linearization of random dynamical systems,, In Dynamics reported, (1995), 203.   Google Scholar

[22]

J. Wloka, "Partielle Differentialgleichungen,", B. G. Teubner, (1982).   Google Scholar

show all references

References:
[1]

H. Amann and J. Escher, Strongly continuous dual semigroups,, Ann. Mat. Pura Appl., 171 (1996), 41.  doi: doi:10.1007/BF01759381.  Google Scholar

[2]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[3]

A. F. Bennett and P. E. Kloeden, The dissipative quasigeostrophic equations,, Mathematika, 28 (1982), 265.  doi: doi:10.1112/S0025579300010329.  Google Scholar

[4]

P. Brune, "Inertiale Mannigfaltigkeiten von stochastischen PDE's mit dynamischen Randbedingungen,", Diplomarbeit, (2006).   Google Scholar

[5]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Multivalued non-autonomous and random dynamical systems, pullback and random attractors, functional stochastic equations, conjugacy method., Submitted., ().   Google Scholar

[6]

C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions,", Springer-Verlag, (1977).   Google Scholar

[7]

S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces,, J. Differential Equations, 74 (1988), 285.  doi: doi:10.1016/0022-0396(88)90007-1.  Google Scholar

[8]

S.-N. Chow, K. Lu, and G. R. Sell, Smoothness of inertial manifolds,, J. Math. Anal. Appl., 169 (1992), 283.  doi: doi:10.1016/0022-247X(92)90115-T.  Google Scholar

[9]

I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions,, Discrete Contin. Dyn. Syst., 18 (2007), 315.  doi: doi:10.3934/dcds.2007.18.315.  Google Scholar

[10]

I. D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems,", AKTA, (2002).   Google Scholar

[11]

I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dynam. Differential Equations, 13 (2001), 355.  doi: doi:10.1023/A:1016684108862.  Google Scholar

[12]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," volume 44 of Encyclopedia of Mathematics and its Applications,, Cambridge University Press, (1992).   Google Scholar

[13]

J. Duan, K. Lu, and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations,, Ann. Probab., 31 (2003), 2109.  doi: doi:10.1214/aop/1068646380.  Google Scholar

[14]

J. Duan, K. Lu, and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations,, J. Dynam. Differential Equations, 16 (2004), 949.  doi: doi:10.1007/s10884-004-7830-z.  Google Scholar

[15]

J. Escher, A note on quasilinear parabolic systems with dynamical boundary conditions,, In, (1992), 138.   Google Scholar

[16]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions,, Comm. Partial Differential Equations, 18 (1993), 1309.  doi: doi:10.1080/03605309308820976.  Google Scholar

[17]

G. Francois, Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions,, Asymptot. Anal., 46 (2006), 43.   Google Scholar

[18]

M. J. Garrido Atienza, K. Lu, and B. Schmalfuß, Unstable manifolds for a stochastic partial differential equation driven by a fractional Brownian motion,, Manuscript., ().   Google Scholar

[19]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations,, J. Differential Equations, 236 (2007), 460.  doi: doi:10.1016/j.jde.2006.09.024.  Google Scholar

[20]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," volume 143 of Applied Mathematical Sciences,, Springer-Verlag, (2002).   Google Scholar

[21]

T. Wanner, Linearization of random dynamical systems,, In Dynamics reported, (1995), 203.   Google Scholar

[22]

J. Wloka, "Partielle Differentialgleichungen,", B. G. Teubner, (1982).   Google Scholar

[1]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[2]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[3]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[4]

Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2235-2255. doi: 10.3934/cpaa.2020098

[5]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[6]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[7]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[8]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[9]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[10]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[11]

Igor Chueshov, Björn Schmalfuss. Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 315-338. doi: 10.3934/dcds.2007.18.315

[12]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020324

[13]

Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069

[14]

Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252

[15]

Yujun Zhu. Preimage entropy for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829

[16]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[17]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[18]

Robert Hesse, Alexandra Neamţu. Global solutions and random dynamical systems for rough evolution equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2723-2748. doi: 10.3934/dcdsb.2020029

[19]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[20]

Roland Schnaubelt. Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1193-1230. doi: 10.3934/dcds.2015.35.1193

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]