May  2011, 10(3): 831-846. doi: 10.3934/cpaa.2011.10.831

Inertial manifolds for stochastic pde with dynamical boundary conditions

1. 

Institut für Mathematik, University of Paderborn, 33098 Paderborn, Germany, Germany

Received  April 2009 Revised  October 2009 Published  December 2010

In this article we investigate the dynamics of stochastic partial differential equations with dynamical boundary conditions. We prove that such a problem with Lipschitz continuous non--linearity generates a random dynamical system. The main result is to show that this random dynamical system has an inertial manifold. Under additional assumptions on the non--linearity this manifold is differentiable.
Citation: Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831
References:
[1]

H. Amann and J. Escher, Strongly continuous dual semigroups,, Ann. Mat. Pura Appl., 171 (1996), 41.  doi: doi:10.1007/BF01759381.  Google Scholar

[2]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[3]

A. F. Bennett and P. E. Kloeden, The dissipative quasigeostrophic equations,, Mathematika, 28 (1982), 265.  doi: doi:10.1112/S0025579300010329.  Google Scholar

[4]

P. Brune, "Inertiale Mannigfaltigkeiten von stochastischen PDE's mit dynamischen Randbedingungen,", Diplomarbeit, (2006).   Google Scholar

[5]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Multivalued non-autonomous and random dynamical systems, pullback and random attractors, functional stochastic equations, conjugacy method., Submitted., ().   Google Scholar

[6]

C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions,", Springer-Verlag, (1977).   Google Scholar

[7]

S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces,, J. Differential Equations, 74 (1988), 285.  doi: doi:10.1016/0022-0396(88)90007-1.  Google Scholar

[8]

S.-N. Chow, K. Lu, and G. R. Sell, Smoothness of inertial manifolds,, J. Math. Anal. Appl., 169 (1992), 283.  doi: doi:10.1016/0022-247X(92)90115-T.  Google Scholar

[9]

I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions,, Discrete Contin. Dyn. Syst., 18 (2007), 315.  doi: doi:10.3934/dcds.2007.18.315.  Google Scholar

[10]

I. D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems,", AKTA, (2002).   Google Scholar

[11]

I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dynam. Differential Equations, 13 (2001), 355.  doi: doi:10.1023/A:1016684108862.  Google Scholar

[12]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," volume 44 of Encyclopedia of Mathematics and its Applications,, Cambridge University Press, (1992).   Google Scholar

[13]

J. Duan, K. Lu, and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations,, Ann. Probab., 31 (2003), 2109.  doi: doi:10.1214/aop/1068646380.  Google Scholar

[14]

J. Duan, K. Lu, and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations,, J. Dynam. Differential Equations, 16 (2004), 949.  doi: doi:10.1007/s10884-004-7830-z.  Google Scholar

[15]

J. Escher, A note on quasilinear parabolic systems with dynamical boundary conditions,, In, (1992), 138.   Google Scholar

[16]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions,, Comm. Partial Differential Equations, 18 (1993), 1309.  doi: doi:10.1080/03605309308820976.  Google Scholar

[17]

G. Francois, Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions,, Asymptot. Anal., 46 (2006), 43.   Google Scholar

[18]

M. J. Garrido Atienza, K. Lu, and B. Schmalfuß, Unstable manifolds for a stochastic partial differential equation driven by a fractional Brownian motion,, Manuscript., ().   Google Scholar

[19]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations,, J. Differential Equations, 236 (2007), 460.  doi: doi:10.1016/j.jde.2006.09.024.  Google Scholar

[20]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," volume 143 of Applied Mathematical Sciences,, Springer-Verlag, (2002).   Google Scholar

[21]

T. Wanner, Linearization of random dynamical systems,, In Dynamics reported, (1995), 203.   Google Scholar

[22]

J. Wloka, "Partielle Differentialgleichungen,", B. G. Teubner, (1982).   Google Scholar

show all references

References:
[1]

H. Amann and J. Escher, Strongly continuous dual semigroups,, Ann. Mat. Pura Appl., 171 (1996), 41.  doi: doi:10.1007/BF01759381.  Google Scholar

[2]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[3]

A. F. Bennett and P. E. Kloeden, The dissipative quasigeostrophic equations,, Mathematika, 28 (1982), 265.  doi: doi:10.1112/S0025579300010329.  Google Scholar

[4]

P. Brune, "Inertiale Mannigfaltigkeiten von stochastischen PDE's mit dynamischen Randbedingungen,", Diplomarbeit, (2006).   Google Scholar

[5]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Multivalued non-autonomous and random dynamical systems, pullback and random attractors, functional stochastic equations, conjugacy method., Submitted., ().   Google Scholar

[6]

C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions,", Springer-Verlag, (1977).   Google Scholar

[7]

S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces,, J. Differential Equations, 74 (1988), 285.  doi: doi:10.1016/0022-0396(88)90007-1.  Google Scholar

[8]

S.-N. Chow, K. Lu, and G. R. Sell, Smoothness of inertial manifolds,, J. Math. Anal. Appl., 169 (1992), 283.  doi: doi:10.1016/0022-247X(92)90115-T.  Google Scholar

[9]

I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions,, Discrete Contin. Dyn. Syst., 18 (2007), 315.  doi: doi:10.3934/dcds.2007.18.315.  Google Scholar

[10]

I. D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems,", AKTA, (2002).   Google Scholar

[11]

I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dynam. Differential Equations, 13 (2001), 355.  doi: doi:10.1023/A:1016684108862.  Google Scholar

[12]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," volume 44 of Encyclopedia of Mathematics and its Applications,, Cambridge University Press, (1992).   Google Scholar

[13]

J. Duan, K. Lu, and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations,, Ann. Probab., 31 (2003), 2109.  doi: doi:10.1214/aop/1068646380.  Google Scholar

[14]

J. Duan, K. Lu, and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations,, J. Dynam. Differential Equations, 16 (2004), 949.  doi: doi:10.1007/s10884-004-7830-z.  Google Scholar

[15]

J. Escher, A note on quasilinear parabolic systems with dynamical boundary conditions,, In, (1992), 138.   Google Scholar

[16]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions,, Comm. Partial Differential Equations, 18 (1993), 1309.  doi: doi:10.1080/03605309308820976.  Google Scholar

[17]

G. Francois, Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions,, Asymptot. Anal., 46 (2006), 43.   Google Scholar

[18]

M. J. Garrido Atienza, K. Lu, and B. Schmalfuß, Unstable manifolds for a stochastic partial differential equation driven by a fractional Brownian motion,, Manuscript., ().   Google Scholar

[19]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations,, J. Differential Equations, 236 (2007), 460.  doi: doi:10.1016/j.jde.2006.09.024.  Google Scholar

[20]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," volume 143 of Applied Mathematical Sciences,, Springer-Verlag, (2002).   Google Scholar

[21]

T. Wanner, Linearization of random dynamical systems,, In Dynamics reported, (1995), 203.   Google Scholar

[22]

J. Wloka, "Partielle Differentialgleichungen,", B. G. Teubner, (1982).   Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[5]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[15]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[16]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]