-
Previous Article
Spectral properties of limit-periodic Schrödinger operators
- CPAA Home
- This Issue
-
Next Article
Inertial manifolds for stochastic pde with dynamical boundary conditions
Topological conjugacy for affine-linear flows and control systems
1. | Institut für Mathematik, Universität Augsburg, 86135 Augsburg |
2. | Departamento de Matemática, Universidade Estadual de Maringá, Maringá-PR, 87020-900, Brazil |
References:
[1] |
A. A. Agrachev and Y. L. Sachkov, "Control Theory from a Geometric Viewpoint," Springer-Verlag, New York, 2004. |
[2] |
B. Aulbach and T. Wanner, Integral manifolds for Carathéodory type differential equations in Banach spaces, in "Six Lectures on Dynamical Systems" (eds. B. Aulbach and F. Colonius), World Scientific, (1996), 45-119. |
[3] |
V. Ayala, F. Colonius and W. Kliemann, On topological equivalence of linear flows with applications to bilinear control systems, J. Dynamical and Control Systems, 13 (2007), 337-362.
doi: doi:10.1007/s10883-007-9021-9. |
[4] |
L. Baratchart, M. Chyba and J.-P. Pomet, A Grobman-Hartman theorem for control systems, J. Dynamics and Differential Equations, 19 (2007), 95-107. |
[5] |
F. Colonius and W. Kliemann, "The Dynamics of Control," Birkhäuser, Boston, 2000. |
[6] |
Nguyen Dinh Cong, "Topological Dynamics of Random Dynamical Systems," Oxford Math. Monogr., Clarendon Press 1997. |
[7] |
D. L. Elliott, "Bilinear Control Systems. Matrices in Action," Applied Mathematical Sciences, 169 Springer-Verlag, New York, 2009. |
[8] |
C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos," CRC Press, 1999. |
show all references
References:
[1] |
A. A. Agrachev and Y. L. Sachkov, "Control Theory from a Geometric Viewpoint," Springer-Verlag, New York, 2004. |
[2] |
B. Aulbach and T. Wanner, Integral manifolds for Carathéodory type differential equations in Banach spaces, in "Six Lectures on Dynamical Systems" (eds. B. Aulbach and F. Colonius), World Scientific, (1996), 45-119. |
[3] |
V. Ayala, F. Colonius and W. Kliemann, On topological equivalence of linear flows with applications to bilinear control systems, J. Dynamical and Control Systems, 13 (2007), 337-362.
doi: doi:10.1007/s10883-007-9021-9. |
[4] |
L. Baratchart, M. Chyba and J.-P. Pomet, A Grobman-Hartman theorem for control systems, J. Dynamics and Differential Equations, 19 (2007), 95-107. |
[5] |
F. Colonius and W. Kliemann, "The Dynamics of Control," Birkhäuser, Boston, 2000. |
[6] |
Nguyen Dinh Cong, "Topological Dynamics of Random Dynamical Systems," Oxford Math. Monogr., Clarendon Press 1997. |
[7] |
D. L. Elliott, "Bilinear Control Systems. Matrices in Action," Applied Mathematical Sciences, 169 Springer-Verlag, New York, 2009. |
[8] |
C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos," CRC Press, 1999. |
[1] |
Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144 |
[2] |
Ming-Chia Li, Ming-Jiea Lyu. Topological conjugacy for Lipschitz perturbations of non-autonomous systems. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5011-5024. doi: 10.3934/dcds.2016017 |
[3] |
Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094 |
[4] |
Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial and Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737 |
[5] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
[6] |
Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181 |
[7] |
Vadim Azhmyakov, Alex Poznyak, Omar Gonzalez. On the robust control design for a class of nonlinearly affine control systems: The attractive ellipsoid approach. Journal of Industrial and Management Optimization, 2013, 9 (3) : 579-593. doi: 10.3934/jimo.2013.9.579 |
[8] |
Wolfgang Krieger, Kengo Matsumoto. Markov-Dyck shifts, neutral periodic points and topological conjugacy. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 1-18. doi: 10.3934/dcds.2019001 |
[9] |
Tomoo Yokoyama. Refinements of topological invariants of flows. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2295-2331. doi: 10.3934/dcds.2021191 |
[10] |
Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061 |
[11] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[12] |
Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33 |
[13] |
Magdi S. Mahmoud, Mohammed M. Hussain. Control design of linear systems with saturating actuators: A survey. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 413-435. doi: 10.3934/naco.2012.2.413 |
[14] |
Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275 |
[15] |
Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063 |
[16] |
Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889 |
[17] |
El Hassan Zerrik, Nihale El Boukhari. Optimal bounded controls problem for bilinear systems. Evolution Equations and Control Theory, 2015, 4 (2) : 221-232. doi: 10.3934/eect.2015.4.221 |
[18] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3641-3657. doi: 10.3934/dcdss.2020434 |
[19] |
John B. Baena, Daniel Cabarcas, Javier Verbel. On the complexity of solving generic overdetermined bilinear systems. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021047 |
[20] |
Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial and Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]