January  2011, 10(1): 93-125. doi: 10.3934/cpaa.2011.10.93

The heterogeneous dam problem with leaky boundary condition

1. 

Fields Institute, 222 College Street, Toronto M5T 3J1

Received  January 2010 Revised  April 2010 Published  November 2010

We study the heterogeneous dam problem, assuming the ux at the bottoms of the reservoirs obeying to a nonlinear law called leaky boundary condition. The velocity and the pressure are related by a nonlinear Darcy's law. Under a general monotonicity hypothesis on the permeability matrix, we prove that the free boundary is represented locally by graphs of continuous functions. We also prove the uniqueness of minimal and maximal solutions. When the ow is given by a linear Darcy law and the permeability matrix is symmetric, we prove the uniqueness of the reservoirs-connected solution.
Citation: Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure & Applied Analysis, 2011, 10 (1) : 93-125. doi: 10.3934/cpaa.2011.10.93
References:
[1]

J. Carrillo and M. Chipot, On the dam problem,, J. Differential Equations, 45 (1982), 234.  doi: doi:10.1016/0022-0396(82)90068-7.  Google Scholar

[2]

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions,, Applied Mathematics & Optimization, 28 (1993), 57.  doi: doi:10.1007/BF01188758.  Google Scholar

[3]

J. Carrillo and A. Lyaghfouri, The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions,, Annali della Scuola Normale Superiore di Pisa Cl. Sci., 26 (1998), 453.   Google Scholar

[4]

M. Chipot and A. Lyaghfouri, The dam problem for nonlinear Darcy's law and leaky boundary conditions,, Mathematical Methods in the Applied Sciences, 20 (1997), 1045.  doi: doi:10.1002/(SICI)1099-1476(199708)20:12<1045::AID-MMA900>3.0.CO;2-3.  Google Scholar

[5]

M. Chipot and A. Lyaghfouri, The dam problem with linear Darcy's law and leaky boundary conditions,, Advances in Differential Equations, 3 (1998), 1.   Google Scholar

[6]

S. Challal and A. Lyaghfouri, A Filtration problem through a heterogeneous porous medium,, Interfaces and Free Boundaries, 6 (2004), 55.  doi: doi:10.4171/IFB/91.  Google Scholar

[7]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results,, Ann. Inst. H. Poincar\'e, 15 (1998), 493.  doi: doi:10.1016/S0294-1449(98)80032-2.  Google Scholar

[8]

E. DiBenedetto, $C^1$ Local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Analysis, 7 (1983), 827.   Google Scholar

[9]

A. Friedman and Shav-Yun Huang, The inhomogeneous dam problem with discountinuous permeability,, Ann. Scu. Norm. Sup. Pisa, 14 (1987), 49.   Google Scholar

[10]

A. Lyaghfouri, The inhomogeneous dam problem with linear Darcy's law and Dirichlet boundary conditions,, Mathematical Models and Methods in Applied Sciences, 6 (1996), 1051.  doi: doi:10.1142/S0218202596000432.  Google Scholar

[11]

A. Lyaghfouri, On the uniqueness of the solution of a nonlinear filtration problem through a porous medium,, Calculus of Variations and Partial Differential Equations, 6 (1998), 67.  doi: doi:10.1007/s005260050082.  Google Scholar

[12]

A. Lyaghfouri, A unified formulation for the dam problem,, Rivista di Matematica della Universit\`a di Parma, 1 (1998), 113.   Google Scholar

[13]

A. Lyaghfouri, A free boundary problem for a fluid flow in a heterogeneous porous medium,, Annali dell' Universita di Ferrara-Sez. VII-Sc. Mat., IL (2003), 209.   Google Scholar

[14]

J. F. Rodrigues, On the dam problem with boundary leacky condition,, Portugaliae Mathematica, 39 (1980), 399.   Google Scholar

[15]

R. Stavre and B. Vernescu, Incompressible fluid flow through a nonhomogeneous and anisotropic dam,, Nonlinear Analysis, 9 (1985), 799.  doi: doi:10.1016/0362-546X(85)90019-7.  Google Scholar

show all references

References:
[1]

J. Carrillo and M. Chipot, On the dam problem,, J. Differential Equations, 45 (1982), 234.  doi: doi:10.1016/0022-0396(82)90068-7.  Google Scholar

[2]

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions,, Applied Mathematics & Optimization, 28 (1993), 57.  doi: doi:10.1007/BF01188758.  Google Scholar

[3]

J. Carrillo and A. Lyaghfouri, The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions,, Annali della Scuola Normale Superiore di Pisa Cl. Sci., 26 (1998), 453.   Google Scholar

[4]

M. Chipot and A. Lyaghfouri, The dam problem for nonlinear Darcy's law and leaky boundary conditions,, Mathematical Methods in the Applied Sciences, 20 (1997), 1045.  doi: doi:10.1002/(SICI)1099-1476(199708)20:12<1045::AID-MMA900>3.0.CO;2-3.  Google Scholar

[5]

M. Chipot and A. Lyaghfouri, The dam problem with linear Darcy's law and leaky boundary conditions,, Advances in Differential Equations, 3 (1998), 1.   Google Scholar

[6]

S. Challal and A. Lyaghfouri, A Filtration problem through a heterogeneous porous medium,, Interfaces and Free Boundaries, 6 (2004), 55.  doi: doi:10.4171/IFB/91.  Google Scholar

[7]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results,, Ann. Inst. H. Poincar\'e, 15 (1998), 493.  doi: doi:10.1016/S0294-1449(98)80032-2.  Google Scholar

[8]

E. DiBenedetto, $C^1$ Local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Analysis, 7 (1983), 827.   Google Scholar

[9]

A. Friedman and Shav-Yun Huang, The inhomogeneous dam problem with discountinuous permeability,, Ann. Scu. Norm. Sup. Pisa, 14 (1987), 49.   Google Scholar

[10]

A. Lyaghfouri, The inhomogeneous dam problem with linear Darcy's law and Dirichlet boundary conditions,, Mathematical Models and Methods in Applied Sciences, 6 (1996), 1051.  doi: doi:10.1142/S0218202596000432.  Google Scholar

[11]

A. Lyaghfouri, On the uniqueness of the solution of a nonlinear filtration problem through a porous medium,, Calculus of Variations and Partial Differential Equations, 6 (1998), 67.  doi: doi:10.1007/s005260050082.  Google Scholar

[12]

A. Lyaghfouri, A unified formulation for the dam problem,, Rivista di Matematica della Universit\`a di Parma, 1 (1998), 113.   Google Scholar

[13]

A. Lyaghfouri, A free boundary problem for a fluid flow in a heterogeneous porous medium,, Annali dell' Universita di Ferrara-Sez. VII-Sc. Mat., IL (2003), 209.   Google Scholar

[14]

J. F. Rodrigues, On the dam problem with boundary leacky condition,, Portugaliae Mathematica, 39 (1980), 399.   Google Scholar

[15]

R. Stavre and B. Vernescu, Incompressible fluid flow through a nonhomogeneous and anisotropic dam,, Nonlinear Analysis, 9 (1985), 799.  doi: doi:10.1016/0362-546X(85)90019-7.  Google Scholar

[1]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[2]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[5]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[6]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[7]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[8]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[9]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[10]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[13]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[14]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[15]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[16]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[17]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[18]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[19]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[20]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]