January  2011, 10(1): 93-125. doi: 10.3934/cpaa.2011.10.93

The heterogeneous dam problem with leaky boundary condition

1. 

Fields Institute, 222 College Street, Toronto M5T 3J1

Received  January 2010 Revised  April 2010 Published  November 2010

We study the heterogeneous dam problem, assuming the ux at the bottoms of the reservoirs obeying to a nonlinear law called leaky boundary condition. The velocity and the pressure are related by a nonlinear Darcy's law. Under a general monotonicity hypothesis on the permeability matrix, we prove that the free boundary is represented locally by graphs of continuous functions. We also prove the uniqueness of minimal and maximal solutions. When the ow is given by a linear Darcy law and the permeability matrix is symmetric, we prove the uniqueness of the reservoirs-connected solution.
Citation: Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure & Applied Analysis, 2011, 10 (1) : 93-125. doi: 10.3934/cpaa.2011.10.93
References:
[1]

J. Carrillo and M. Chipot, On the dam problem,, J. Differential Equations, 45 (1982), 234. doi: doi:10.1016/0022-0396(82)90068-7. Google Scholar

[2]

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions,, Applied Mathematics & Optimization, 28 (1993), 57. doi: doi:10.1007/BF01188758. Google Scholar

[3]

J. Carrillo and A. Lyaghfouri, The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions,, Annali della Scuola Normale Superiore di Pisa Cl. Sci., 26 (1998), 453. Google Scholar

[4]

M. Chipot and A. Lyaghfouri, The dam problem for nonlinear Darcy's law and leaky boundary conditions,, Mathematical Methods in the Applied Sciences, 20 (1997), 1045. doi: doi:10.1002/(SICI)1099-1476(199708)20:12<1045::AID-MMA900>3.0.CO;2-3. Google Scholar

[5]

M. Chipot and A. Lyaghfouri, The dam problem with linear Darcy's law and leaky boundary conditions,, Advances in Differential Equations, 3 (1998), 1. Google Scholar

[6]

S. Challal and A. Lyaghfouri, A Filtration problem through a heterogeneous porous medium,, Interfaces and Free Boundaries, 6 (2004), 55. doi: doi:10.4171/IFB/91. Google Scholar

[7]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results,, Ann. Inst. H. Poincar\'e, 15 (1998), 493. doi: doi:10.1016/S0294-1449(98)80032-2. Google Scholar

[8]

E. DiBenedetto, $C^1$ Local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Analysis, 7 (1983), 827. Google Scholar

[9]

A. Friedman and Shav-Yun Huang, The inhomogeneous dam problem with discountinuous permeability,, Ann. Scu. Norm. Sup. Pisa, 14 (1987), 49. Google Scholar

[10]

A. Lyaghfouri, The inhomogeneous dam problem with linear Darcy's law and Dirichlet boundary conditions,, Mathematical Models and Methods in Applied Sciences, 6 (1996), 1051. doi: doi:10.1142/S0218202596000432. Google Scholar

[11]

A. Lyaghfouri, On the uniqueness of the solution of a nonlinear filtration problem through a porous medium,, Calculus of Variations and Partial Differential Equations, 6 (1998), 67. doi: doi:10.1007/s005260050082. Google Scholar

[12]

A. Lyaghfouri, A unified formulation for the dam problem,, Rivista di Matematica della Universit\`a di Parma, 1 (1998), 113. Google Scholar

[13]

A. Lyaghfouri, A free boundary problem for a fluid flow in a heterogeneous porous medium,, Annali dell' Universita di Ferrara-Sez. VII-Sc. Mat., IL (2003), 209. Google Scholar

[14]

J. F. Rodrigues, On the dam problem with boundary leacky condition,, Portugaliae Mathematica, 39 (1980), 399. Google Scholar

[15]

R. Stavre and B. Vernescu, Incompressible fluid flow through a nonhomogeneous and anisotropic dam,, Nonlinear Analysis, 9 (1985), 799. doi: doi:10.1016/0362-546X(85)90019-7. Google Scholar

show all references

References:
[1]

J. Carrillo and M. Chipot, On the dam problem,, J. Differential Equations, 45 (1982), 234. doi: doi:10.1016/0022-0396(82)90068-7. Google Scholar

[2]

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions,, Applied Mathematics & Optimization, 28 (1993), 57. doi: doi:10.1007/BF01188758. Google Scholar

[3]

J. Carrillo and A. Lyaghfouri, The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions,, Annali della Scuola Normale Superiore di Pisa Cl. Sci., 26 (1998), 453. Google Scholar

[4]

M. Chipot and A. Lyaghfouri, The dam problem for nonlinear Darcy's law and leaky boundary conditions,, Mathematical Methods in the Applied Sciences, 20 (1997), 1045. doi: doi:10.1002/(SICI)1099-1476(199708)20:12<1045::AID-MMA900>3.0.CO;2-3. Google Scholar

[5]

M. Chipot and A. Lyaghfouri, The dam problem with linear Darcy's law and leaky boundary conditions,, Advances in Differential Equations, 3 (1998), 1. Google Scholar

[6]

S. Challal and A. Lyaghfouri, A Filtration problem through a heterogeneous porous medium,, Interfaces and Free Boundaries, 6 (2004), 55. doi: doi:10.4171/IFB/91. Google Scholar

[7]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results,, Ann. Inst. H. Poincar\'e, 15 (1998), 493. doi: doi:10.1016/S0294-1449(98)80032-2. Google Scholar

[8]

E. DiBenedetto, $C^1$ Local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Analysis, 7 (1983), 827. Google Scholar

[9]

A. Friedman and Shav-Yun Huang, The inhomogeneous dam problem with discountinuous permeability,, Ann. Scu. Norm. Sup. Pisa, 14 (1987), 49. Google Scholar

[10]

A. Lyaghfouri, The inhomogeneous dam problem with linear Darcy's law and Dirichlet boundary conditions,, Mathematical Models and Methods in Applied Sciences, 6 (1996), 1051. doi: doi:10.1142/S0218202596000432. Google Scholar

[11]

A. Lyaghfouri, On the uniqueness of the solution of a nonlinear filtration problem through a porous medium,, Calculus of Variations and Partial Differential Equations, 6 (1998), 67. doi: doi:10.1007/s005260050082. Google Scholar

[12]

A. Lyaghfouri, A unified formulation for the dam problem,, Rivista di Matematica della Universit\`a di Parma, 1 (1998), 113. Google Scholar

[13]

A. Lyaghfouri, A free boundary problem for a fluid flow in a heterogeneous porous medium,, Annali dell' Universita di Ferrara-Sez. VII-Sc. Mat., IL (2003), 209. Google Scholar

[14]

J. F. Rodrigues, On the dam problem with boundary leacky condition,, Portugaliae Mathematica, 39 (1980), 399. Google Scholar

[15]

R. Stavre and B. Vernescu, Incompressible fluid flow through a nonhomogeneous and anisotropic dam,, Nonlinear Analysis, 9 (1985), 799. doi: doi:10.1016/0362-546X(85)90019-7. Google Scholar

[1]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[2]

Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837

[3]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[4]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[5]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[6]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[7]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[8]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[9]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

[10]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

[11]

Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44

[12]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[13]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[14]

Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713

[15]

J. García-Melián, Julio D. Rossi, José Sabina de Lis. A convex-concave elliptic problem with a parameter on the boundary condition. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1095-1124. doi: 10.3934/dcds.2012.32.1095

[16]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[17]

Hiroko Morimoto. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 631-639. doi: 10.3934/dcdss.2012.5.631

[18]

G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279

[19]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[20]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 667-684. doi: 10.3934/krm.2015.8.667

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]