May  2011, 10(3): 937-961. doi: 10.3934/cpaa.2011.10.937

Nonautonomous continuation of bounded solutions

1. 

Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, D-85758 Garching

Received  March 2009 Revised  September 2009 Published  December 2010

We show the persistence of hyperbolic bounded solutions to nonautonomous difference and retarded functional differential equations under parameter perturbation, where hyperbolicity is given in terms of an exponential dichotomy in variation. Our functional-analytical approach is based on a formulation of dynamical systems as operator equations in ambient sequence or function spaces. This yields short proofs, in particular of the stable manifold theorem.
As an ad hoc application, the behavior of hyperbolic solutions and stable manifolds for ODEs under numerical discretization with varying step-sizes is studied.
Citation: Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937
References:
[1]

E. L. Allgower and K. Georg, "Numerical Continuation Methods. An Introduction,", Springer Series in Computational Mathematics 13, (1990).   Google Scholar

[2]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Computers & Mathematics with Applications, 38 (1998), 41.   Google Scholar

[3]

H. Amann, "Ordinary Differential Equations: An Introduction to Nonlinear Analysis,", Studies in Mathematics 13, (1990).   Google Scholar

[4]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II,, Journal of Difference Equations and Applications, 2 (1996), 251.  doi: doi:10.1080/10236199608808060.  Google Scholar

[5]

B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations,, Journal of Difference Equations and Applications, 7 (2001), 895.  doi: doi:10.1080/10236190108808310.  Google Scholar

[6]

A. G. Baskakov, Invertibility and the Fredholm property of difference operators,, Mathematical Notes, 67 (2000), 690.  doi: doi:10.1007/BF02675622.  Google Scholar

[7]

A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts,, Integral Equations and Operator Theory, 14 (1991), 613.  doi: doi:10.1007/BF01200554.  Google Scholar

[8]

A. Berger, Counting uniformly attracting solutions of nonautonomous differential equations,, Discrete and Continuous Dynamical Systems (Series S), 1 (2008), 15.   Google Scholar

[9]

A. Berger and S. Siegmund, Uniformly attracting solutions of nonautonomous differential equations,, Nonlinear Analysis (TMA), 68 (2008), 3789.  doi: doi:10.1016/j.na.2007.04.020.  Google Scholar

[10]

W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps,, {SIAM} Journal of Numerical Analysis, 34 (1997), 1209.  doi: doi:10.1137/S0036142995281693.  Google Scholar

[11]

Z. Bishnani and R. S. Mackay, Safety criteria for aperiodically forced systems,, Dynamical Systems, 18 (2003), 107.  doi: doi:10.1080/1468936031000080795.  Google Scholar

[12]

O. Boichuk, Solutions of linear and nonlinear difference equations bounded on the whole line,, Nonlinear Oscillations, 4 (2001), 16.   Google Scholar

[13]

A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-auton-omous attractors,, Cadernos de Matem{\'a}tica, 07 (2006), 277.   Google Scholar

[14]

C. Chicone, "Ordinary Differential Equations with Applications," 2nd edition,, Texts in Applied Mathematics 34, (2006).   Google Scholar

[15]

C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical Surveys and Monographs 70, (1999).   Google Scholar

[16]

W. A. Coppel, "Dichotomies in Stability Theory,", Lecture Notes in Math. 629, (1978).   Google Scholar

[17]

I. Győri and M. Pituk, The converse of the theorem on stability by the first approximation for difference equations,, Nonlinear Analysis (TMA), 47 (2001), 4635.  doi: doi:10.1016/S0362-546X(01)00576-4.  Google Scholar

[18]

A. Hagen, Hyperbolic trajectories of time discretizations,, Nonlinear Analysis (TMA), 59 (2004), 121.   Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Applied Mathematical Sciences 99, (1993).   Google Scholar

[20]

J. K. Hale and M. Weedermann, On perturbations of delay-differential equations with periodic orbits,, Journal of Differential Equations, 197 (2004), 219.  doi: doi:10.1016/S0022-0396(02)00063-3.  Google Scholar

[21]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Math. 840, (1981).   Google Scholar

[22]

M. W. Hirsch and S. Smale, "Differential Equations, Dynamical Systems, and Linear Algebra,", Academic Press, (1974).   Google Scholar

[23]

J. M. Holtzman, Explicit $\epsilon$ and $\delta$ for the implicit function theorem,, SIAM Review, 12 (1970), 284.  doi: doi:10.1137/1012051.  Google Scholar

[24]

T. Hüls, Homoclinic trajectories of non-autonomous maps,, Journal of Difference Equations and Applications, (2009).   Google Scholar

[25]

G. Iooss, "Bifurcation of Maps and Applications,", Mathematics Studies 36, (1979).   Google Scholar

[26]

N. Ju, D. Small and S. Wiggins, Existence and computation of hyperbolic trajectories of aperiodically time dependent vector fields and their approximations,, International Journal of Bifurcation and Chaos, 13 (2003), 1449.  doi: doi:10.1142/S0218127403007321.  Google Scholar

[27]

J. Kalkbrenner, "Exponentielle Dichotomie und chaotische Dynamik nichtinvertierbarer Differenzengleichungen,", Ph.D. thesis, (1994).   Google Scholar

[28]

H. Kielhöfer, "Bifurcation Theory: An Introduction with Applications to PDEs,", Applied Mathematical Sciences 156, (2004).   Google Scholar

[29]

B. Krauskopf, H. M. Osinga and J. Galán-Vioque, "Numerical Continuation Methods for Dynamical Systems. Path Following and Boundary Value Problems,", Springer, (2007).   Google Scholar

[30]

S. Lang, "Real and Functional Analysis,", Graduate Texts in Mathematics 142, (1993).   Google Scholar

[31]

P. Perfetti, An infinite-dimensional extension of a Poincaré result concerning the continuation of periodic orbits,, Discrete and Continuous Dynamical Systems, 3 (1997), 401.  doi: doi:10.3934/dcds.1997.3.401.  Google Scholar

[32]

C. Pötzsche, A note on the dichotomy spectrum,, Journal of Difference Equations and Applications, 15 (2009), 1021.   Google Scholar

[33]

C. Pötzsche and M. Rasmussen, Taylor approximation of invariant fiber bundles,, Nonlinear Analysis (TMA), 60 (2005), 1303.   Google Scholar

[34]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences 143, (2002).   Google Scholar

[35]

E. Zeidler, "Nonlinear Functional Analysis and its Applications I (Fixed-Points Theorems),", Springer, (1993).   Google Scholar

show all references

References:
[1]

E. L. Allgower and K. Georg, "Numerical Continuation Methods. An Introduction,", Springer Series in Computational Mathematics 13, (1990).   Google Scholar

[2]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Computers & Mathematics with Applications, 38 (1998), 41.   Google Scholar

[3]

H. Amann, "Ordinary Differential Equations: An Introduction to Nonlinear Analysis,", Studies in Mathematics 13, (1990).   Google Scholar

[4]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II,, Journal of Difference Equations and Applications, 2 (1996), 251.  doi: doi:10.1080/10236199608808060.  Google Scholar

[5]

B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations,, Journal of Difference Equations and Applications, 7 (2001), 895.  doi: doi:10.1080/10236190108808310.  Google Scholar

[6]

A. G. Baskakov, Invertibility and the Fredholm property of difference operators,, Mathematical Notes, 67 (2000), 690.  doi: doi:10.1007/BF02675622.  Google Scholar

[7]

A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts,, Integral Equations and Operator Theory, 14 (1991), 613.  doi: doi:10.1007/BF01200554.  Google Scholar

[8]

A. Berger, Counting uniformly attracting solutions of nonautonomous differential equations,, Discrete and Continuous Dynamical Systems (Series S), 1 (2008), 15.   Google Scholar

[9]

A. Berger and S. Siegmund, Uniformly attracting solutions of nonautonomous differential equations,, Nonlinear Analysis (TMA), 68 (2008), 3789.  doi: doi:10.1016/j.na.2007.04.020.  Google Scholar

[10]

W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps,, {SIAM} Journal of Numerical Analysis, 34 (1997), 1209.  doi: doi:10.1137/S0036142995281693.  Google Scholar

[11]

Z. Bishnani and R. S. Mackay, Safety criteria for aperiodically forced systems,, Dynamical Systems, 18 (2003), 107.  doi: doi:10.1080/1468936031000080795.  Google Scholar

[12]

O. Boichuk, Solutions of linear and nonlinear difference equations bounded on the whole line,, Nonlinear Oscillations, 4 (2001), 16.   Google Scholar

[13]

A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-auton-omous attractors,, Cadernos de Matem{\'a}tica, 07 (2006), 277.   Google Scholar

[14]

C. Chicone, "Ordinary Differential Equations with Applications," 2nd edition,, Texts in Applied Mathematics 34, (2006).   Google Scholar

[15]

C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical Surveys and Monographs 70, (1999).   Google Scholar

[16]

W. A. Coppel, "Dichotomies in Stability Theory,", Lecture Notes in Math. 629, (1978).   Google Scholar

[17]

I. Győri and M. Pituk, The converse of the theorem on stability by the first approximation for difference equations,, Nonlinear Analysis (TMA), 47 (2001), 4635.  doi: doi:10.1016/S0362-546X(01)00576-4.  Google Scholar

[18]

A. Hagen, Hyperbolic trajectories of time discretizations,, Nonlinear Analysis (TMA), 59 (2004), 121.   Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Applied Mathematical Sciences 99, (1993).   Google Scholar

[20]

J. K. Hale and M. Weedermann, On perturbations of delay-differential equations with periodic orbits,, Journal of Differential Equations, 197 (2004), 219.  doi: doi:10.1016/S0022-0396(02)00063-3.  Google Scholar

[21]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Math. 840, (1981).   Google Scholar

[22]

M. W. Hirsch and S. Smale, "Differential Equations, Dynamical Systems, and Linear Algebra,", Academic Press, (1974).   Google Scholar

[23]

J. M. Holtzman, Explicit $\epsilon$ and $\delta$ for the implicit function theorem,, SIAM Review, 12 (1970), 284.  doi: doi:10.1137/1012051.  Google Scholar

[24]

T. Hüls, Homoclinic trajectories of non-autonomous maps,, Journal of Difference Equations and Applications, (2009).   Google Scholar

[25]

G. Iooss, "Bifurcation of Maps and Applications,", Mathematics Studies 36, (1979).   Google Scholar

[26]

N. Ju, D. Small and S. Wiggins, Existence and computation of hyperbolic trajectories of aperiodically time dependent vector fields and their approximations,, International Journal of Bifurcation and Chaos, 13 (2003), 1449.  doi: doi:10.1142/S0218127403007321.  Google Scholar

[27]

J. Kalkbrenner, "Exponentielle Dichotomie und chaotische Dynamik nichtinvertierbarer Differenzengleichungen,", Ph.D. thesis, (1994).   Google Scholar

[28]

H. Kielhöfer, "Bifurcation Theory: An Introduction with Applications to PDEs,", Applied Mathematical Sciences 156, (2004).   Google Scholar

[29]

B. Krauskopf, H. M. Osinga and J. Galán-Vioque, "Numerical Continuation Methods for Dynamical Systems. Path Following and Boundary Value Problems,", Springer, (2007).   Google Scholar

[30]

S. Lang, "Real and Functional Analysis,", Graduate Texts in Mathematics 142, (1993).   Google Scholar

[31]

P. Perfetti, An infinite-dimensional extension of a Poincaré result concerning the continuation of periodic orbits,, Discrete and Continuous Dynamical Systems, 3 (1997), 401.  doi: doi:10.3934/dcds.1997.3.401.  Google Scholar

[32]

C. Pötzsche, A note on the dichotomy spectrum,, Journal of Difference Equations and Applications, 15 (2009), 1021.   Google Scholar

[33]

C. Pötzsche and M. Rasmussen, Taylor approximation of invariant fiber bundles,, Nonlinear Analysis (TMA), 60 (2005), 1303.   Google Scholar

[34]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences 143, (2002).   Google Scholar

[35]

E. Zeidler, "Nonlinear Functional Analysis and its Applications I (Fixed-Points Theorems),", Springer, (1993).   Google Scholar

[1]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[2]

Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094

[3]

Éder Rítis Aragão Costa. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 845-868. doi: 10.3934/cpaa.2019041

[4]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[5]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[6]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[7]

Bassam Fayad, A. Windsor. A dichotomy between discrete and continuous spectrum for a class of special flows over rotations. Journal of Modern Dynamics, 2007, 1 (1) : 107-122. doi: 10.3934/jmd.2007.1.107

[8]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[9]

Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349

[10]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[11]

Christian Pötzsche. Dichotomy spectra of triangular equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 423-450. doi: 10.3934/dcds.2016.36.423

[12]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[13]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[14]

Giovanna Citti, Maria Manfredini, Alessandro Sarti. Finite difference approximation of the Mumford and Shah functional in a contact manifold of the Heisenberg space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 905-927. doi: 10.3934/cpaa.2010.9.905

[15]

António J.G. Bento, Nicolae Lupa, Mihail Megan, César M. Silva. Integral conditions for nonuniform $μ$-dichotomy on the half-line. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3063-3077. doi: 10.3934/dcdsb.2017163

[16]

Kristin Dettmers, Robert Giza, Rafael Morales, John A. Rock, Christina Knox. A survey of complex dimensions, measurability, and the lattice/nonlattice dichotomy. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 213-240. doi: 10.3934/dcdss.2017011

[17]

Thorsten Hüls. Numerical computation of dichotomy rates and projectors in discrete time. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 109-131. doi: 10.3934/dcdsb.2009.12.109

[18]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[19]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[20]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]