Citation: |
[1] |
E. L. Allgower and K. Georg, "Numerical Continuation Methods. An Introduction," Springer Series in Computational Mathematics 13, Springer, Berlin etc., 1990. |
[2] |
A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations, Computers & Mathematics with Applications, 38 (1998), 41-49. |
[3] |
H. Amann, "Ordinary Differential Equations: An Introduction to Nonlinear Analysis," Studies in Mathematics 13, Walter De Gruyter, Berlin-New York, 1990. |
[4] |
B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II, Journal of Difference Equations and Applications, 2 (1996), 251-262.doi: doi:10.1080/10236199608808060. |
[5] |
B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations, Journal of Difference Equations and Applications, 7 (2001), 895-913.doi: doi:10.1080/10236190108808310. |
[6] |
A. G. Baskakov, Invertibility and the Fredholm property of difference operators, Mathematical Notes, 67 (2000), 690-698.doi: doi:10.1007/BF02675622. |
[7] |
A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts, Integral Equations and Operator Theory, 14 (1991), 613-677.doi: doi:10.1007/BF01200554. |
[8] |
A. Berger, Counting uniformly attracting solutions of nonautonomous differential equations, Discrete and Continuous Dynamical Systems (Series S), 1 (2008), 15-25. |
[9] |
A. Berger and S. Siegmund, Uniformly attracting solutions of nonautonomous differential equations, Nonlinear Analysis (TMA), 68 (2008), 3789-3811.doi: doi:10.1016/j.na.2007.04.020. |
[10] |
W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps, SIAM Journal of Numerical Analysis, 34 (1997), 1209-1236.doi: doi:10.1137/S0036142995281693. |
[11] |
Z. Bishnani and R. S. Mackay, Safety criteria for aperiodically forced systems, Dynamical Systems, 18 (2003), 107-129.doi: doi:10.1080/1468936031000080795. |
[12] |
O. Boichuk, Solutions of linear and nonlinear difference equations bounded on the whole line, Nonlinear Oscillations, 4 (2001), 16-27. |
[13] |
A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-auton-omous attractors, Cadernos de Matemática, 07 (2006), 277-302. |
[14] |
C. Chicone, "Ordinary Differential Equations with Applications," 2nd edition, Texts in Applied Mathematics 34, Springer, Berlin etc., 2006. |
[15] |
C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Mathematical Surveys and Monographs 70, AMS, Providence RI, 1999. |
[16] |
W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Math. 629, Springer, Berlin etc., 1978. |
[17] |
I. Győri and M. Pituk, The converse of the theorem on stability by the first approximation for difference equations, Nonlinear Analysis (TMA), 47 (2001), 4635-4640.doi: doi:10.1016/S0362-546X(01)00576-4. |
[18] |
A. Hagen, Hyperbolic trajectories of time discretizations, Nonlinear Analysis (TMA), 59 (2004), 121-132. |
[19] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations," Applied Mathematical Sciences 99, Springer, Berlin etc., 1993. |
[20] |
J. K. Hale and M. Weedermann, On perturbations of delay-differential equations with periodic orbits, Journal of Differential Equations, 197 (2004), 219-246.doi: doi:10.1016/S0022-0396(02)00063-3. |
[21] |
D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Math. 840, Springer, Berlin etc., 1981. |
[22] |
M. W. Hirsch and S. Smale, "Differential Equations, Dynamical Systems, and Linear Algebra," Academic Press, Boston, 1974. |
[23] |
J. M. Holtzman, Explicit $\epsilon$ and $\delta$ for the implicit function theorem, SIAM Review, 12 (1970), 284-286.doi: doi:10.1137/1012051. |
[24] |
T. Hüls, Homoclinic trajectories of non-autonomous maps, Journal of Difference Equations and Applications, to appear, 2009. |
[25] |
G. Iooss, "Bifurcation of Maps and Applications," Mathematics Studies 36, North-Holland, Amsterdam, 1979. |
[26] |
N. Ju, D. Small and S. Wiggins, Existence and computation of hyperbolic trajectories of aperiodically time dependent vector fields and their approximations, International Journal of Bifurcation and Chaos, 13 (2003), 1449-1457.doi: doi:10.1142/S0218127403007321. |
[27] |
J. Kalkbrenner, "Exponentielle Dichotomie und chaotische Dynamik nichtinvertierbarer Differenzengleichungen," Ph.D. thesis, Universität Augsburg, Germany, 1994. |
[28] |
H. Kielhöfer, "Bifurcation Theory: An Introduction with Applications to PDEs," Applied Mathematical Sciences 156, Springer, New York, 2004. |
[29] |
B. Krauskopf, H. M. Osinga and J. Galán-Vioque, "Numerical Continuation Methods for Dynamical Systems. Path Following and Boundary Value Problems," Springer, Berlin etc., 2007. |
[30] |
S. Lang, "Real and Functional Analysis," Graduate Texts in Mathematics 142, Springer, Berlin etc., 1993. |
[31] |
P. Perfetti, An infinite-dimensional extension of a Poincaré result concerning the continuation of periodic orbits, Discrete and Continuous Dynamical Systems, 3 (1997), 401-418.doi: doi:10.3934/dcds.1997.3.401. |
[32] |
C. Pötzsche, A note on the dichotomy spectrum, Journal of Difference Equations and Applications, 15 (2009), 1021-1025. |
[33] |
C. Pötzsche and M. Rasmussen, Taylor approximation of invariant fiber bundles, Nonlinear Analysis (TMA), 60 (2005), 1303-1330. |
[34] |
G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences 143, Springer, Berlin etc., 2002. |
[35] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications I (Fixed-Points Theorems)," Springer, Berlin etc., 1993. |