May  2012, 11(3): 1003-1011. doi: 10.3934/cpaa.2012.11.1003

Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations

1. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

2. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong

Received  October 2010 Revised  April 2011 Published  December 2011

We study the uniqueness of positive solutions of the following coupled nonlinear Schrödinger equations: \begin{eqnarray*} \Delta u_1-\lambda_1 u_1+\mu_1u_1^3+\beta u_1u_2^2=0\quad in\quad R^N,\\ \Delta u_2-\lambda_2u_2+\mu_2u_2^3+\beta u_1^2u_2=0\quad in\quad R^N, \\ u_1>0, u_2>0, u_1, u_2 \in H^1 (R^N), \end{eqnarray*} where $N\leq3$, $\lambda_1,\lambda_2,\mu_1,\mu_2$ are positive constants and $\beta\geq 0$ is a coupling constant. We prove first the uniqueness of positive solution for sufficiently small $\beta > 0$. Secondly, assuming that $\lambda_1=\lambda_2$, we show that $u_1=u_2\sqrt{\beta-\mu_1}/\sqrt{\beta-\mu_2}$ when $\beta > \max\{\mu_1,\mu_2\}$ and thus obtain the uniqueness of positive solution using the corresponding result of scalar equation. Finally, for $N=1$ and $\lambda_1=\lambda_2$, we prove the uniqueness of positive solution when $0\leq \beta\notin [\min\{\mu_1,\mu_2\},\max\{\mu_1,\mu_2\}]$ and thus give a complete classification of positive solutions.
Citation: Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003
References:
[1]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453.  doi: 10.1016/j.crma.2006.01.024.  Google Scholar

[2]

J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space,, J. Differential Equations, 163 (2000), 41.  doi: 10.1006/jdeq.1999.3701.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Eqns., 19 (2006), 200.   Google Scholar

[4]

T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[5]

E. N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Trans. Amer. Math. Soc., 361 (2009), 1189.  doi: 10.1090/S0002-9947-08-04735-1.  Google Scholar

[6]

N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system,, NoDEA, 16 (2009), 555.  doi: 10.1007/s00030-009-0017-x.  Google Scholar

[7]

X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations,, Adv. Diff. Eqns., 5 (2000), 899.   Google Scholar

[8]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[9]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$,, Communications in Mathematical Physics, 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[10]

T. C. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Diff. Eqns., 229 (2006), 538.  doi: 10.1016/j.jde.2005.12.011.  Google Scholar

[11]

O. Lopes, Uniqueness of a symmetric positive solutions to an ODE system,, Elect. J. Diff. Eqns., 162 (2009), 1.   Google Scholar

[12]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations,, Comm. Math. Physics, 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453.  doi: 10.1016/j.crma.2006.01.024.  Google Scholar

[2]

J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space,, J. Differential Equations, 163 (2000), 41.  doi: 10.1006/jdeq.1999.3701.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Eqns., 19 (2006), 200.   Google Scholar

[4]

T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[5]

E. N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Trans. Amer. Math. Soc., 361 (2009), 1189.  doi: 10.1090/S0002-9947-08-04735-1.  Google Scholar

[6]

N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system,, NoDEA, 16 (2009), 555.  doi: 10.1007/s00030-009-0017-x.  Google Scholar

[7]

X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations,, Adv. Diff. Eqns., 5 (2000), 899.   Google Scholar

[8]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[9]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$,, Communications in Mathematical Physics, 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[10]

T. C. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Diff. Eqns., 229 (2006), 538.  doi: 10.1016/j.jde.2005.12.011.  Google Scholar

[11]

O. Lopes, Uniqueness of a symmetric positive solutions to an ODE system,, Elect. J. Diff. Eqns., 162 (2009), 1.   Google Scholar

[12]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations,, Comm. Math. Physics, 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

[1]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[2]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[7]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[8]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[13]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[14]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[15]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[16]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[17]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[18]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[19]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (64)

Other articles
by authors

[Back to Top]