Citation: |
[1] |
L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math., 130 (1989), 189-213.doi: 10.2307/1971480. |
[2] |
L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383-402.doi: 10.1007/BF02498216. |
[3] |
L. A. Caffarelli, "The Obstacle Problem. Lezioni Fermiane," [Fermi Lectures], Accademia Nazionale dei Lincei, Rome, 1998. |
[4] |
X. Chen, J. Hong and F. Yi, Existence,uniqueness,and regularity of classical solutions of the mullins-sekerka problem, Comm. In. PDE, 21 (1996), 1705-1727.doi: 10.1016/j.jde.2004.10.028. |
[5] |
X. Chen and F. Retich, Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 164 (1992), 350-362.doi: 10.1016/0022-247X(92)90119-X. |
[6] |
E. Milakis and L. E. Silvestre, Regularity for fully nonlinear elliptic equations with neumann boundary data, Com. in Partial Differential Equations, 31 (2006), 1227-1252.doi: 10.1080/03605300600634999. |
[7] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," vol. 30 of PMS. Princeton University Press, 1971. |
[8] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. I, Comm. Pure Appl. Math., 45 (1992), 27-76. |
[9] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. II, Comm. Pure Appl. Math., 45 (1992), 141-178. |