-
Previous Article
A faithful symbolic extension
- CPAA Home
- This Issue
-
Next Article
Carleman estimates for the Schrödinger operator and applications to unique continuation
Schauder type estimates of linearized Mullins-Sekerka problem
1. | Department of Mathematics, Ningbo University, Ningbo, Zhejiang, 315211, China |
2. | Department of Mathematics, University of Iowa, Iowa City, IA 52242 |
References:
[1] |
L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations,, Ann. Math., 130 (1989), 189.
doi: 10.2307/1971480. |
[2] |
L. A. Caffarelli, The obstacle problem revisited,, J. Fourier Anal. Appl., 4 (1998), 383.
doi: 10.1007/BF02498216. |
[3] |
L. A. Caffarelli, "The Obstacle Problem. Lezioni Fermiane," [Fermi Lectures],, Accademia Nazionale dei Lincei, (1998).
|
[4] |
X. Chen, J. Hong and F. Yi, Existence,uniqueness,and regularity of classical solutions of the mullins-sekerka problem,, Comm. In. PDE, 21 (1996), 1705.
doi: 10.1016/j.jde.2004.10.028. |
[5] |
X. Chen and F. Retich, Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling,, J. Math. Anal. Appl., 164 (1992), 350.
doi: 10.1016/0022-247X(92)90119-X. |
[6] |
E. Milakis and L. E. Silvestre, Regularity for fully nonlinear elliptic equations with neumann boundary data,, Com. in Partial Differential Equations, 31 (2006), 1227.
doi: 10.1080/03605300600634999. |
[7] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", vol. 30 of PMS. Princeton University Press, (1971).
|
[8] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. I,, Comm. Pure Appl. Math., 45 (1992), 27.
|
[9] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. II,, Comm. Pure Appl. Math., 45 (1992), 141.
|
show all references
References:
[1] |
L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations,, Ann. Math., 130 (1989), 189.
doi: 10.2307/1971480. |
[2] |
L. A. Caffarelli, The obstacle problem revisited,, J. Fourier Anal. Appl., 4 (1998), 383.
doi: 10.1007/BF02498216. |
[3] |
L. A. Caffarelli, "The Obstacle Problem. Lezioni Fermiane," [Fermi Lectures],, Accademia Nazionale dei Lincei, (1998).
|
[4] |
X. Chen, J. Hong and F. Yi, Existence,uniqueness,and regularity of classical solutions of the mullins-sekerka problem,, Comm. In. PDE, 21 (1996), 1705.
doi: 10.1016/j.jde.2004.10.028. |
[5] |
X. Chen and F. Retich, Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling,, J. Math. Anal. Appl., 164 (1992), 350.
doi: 10.1016/0022-247X(92)90119-X. |
[6] |
E. Milakis and L. E. Silvestre, Regularity for fully nonlinear elliptic equations with neumann boundary data,, Com. in Partial Differential Equations, 31 (2006), 1227.
doi: 10.1080/03605300600634999. |
[7] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", vol. 30 of PMS. Princeton University Press, (1971).
|
[8] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. I,, Comm. Pure Appl. Math., 45 (1992), 27.
|
[9] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. II,, Comm. Pure Appl. Math., 45 (1992), 141.
|
[1] |
Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225 |
[2] |
Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 |
[3] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 |
[4] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[5] |
Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307 |
[6] |
John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333 |
[7] |
Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 |
[8] |
J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176 |
[9] |
Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62 |
[10] |
Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961 |
[11] |
Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711 |
[12] |
Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088 |
[13] |
Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46 |
[14] |
Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605 |
[15] |
Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076 |
[16] |
Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883 |
[17] |
Stefano Galatolo, Isaia Nisoli, Benoît Saussol. An elementary way to rigorously estimate convergence to equilibrium and escape rates. Journal of Computational Dynamics, 2015, 2 (1) : 51-64. doi: 10.3934/jcd.2015.2.51 |
[18] |
Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387 |
[19] |
Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091 |
[20] |
Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]