May  2012, 11(3): 1037-1050. doi: 10.3934/cpaa.2012.11.1037

Schauder type estimates of linearized Mullins-Sekerka problem

1. 

Department of Mathematics, Ningbo University, Ningbo, Zhejiang, 315211, China

2. 

Department of Mathematics, University of Iowa, Iowa City, IA 52242

Received  October 2010 Revised  May 2011 Published  December 2011

In this paper we obtain a Caccioppoli type estimate for the model of the linearized Mullins-Sekerka equations by a new technique, then we use this estimate to derive it's Schauder type estimates by polynomial approximation method.
Citation: Feiyao Ma, Lihe Wang. Schauder type estimates of linearized Mullins-Sekerka problem. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1037-1050. doi: 10.3934/cpaa.2012.11.1037
References:
[1]

L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations,, Ann. Math., 130 (1989), 189.  doi: 10.2307/1971480.  Google Scholar

[2]

L. A. Caffarelli, The obstacle problem revisited,, J. Fourier Anal. Appl., 4 (1998), 383.  doi: 10.1007/BF02498216.  Google Scholar

[3]

L. A. Caffarelli, "The Obstacle Problem. Lezioni Fermiane," [Fermi Lectures],, Accademia Nazionale dei Lincei, (1998).   Google Scholar

[4]

X. Chen, J. Hong and F. Yi, Existence,uniqueness,and regularity of classical solutions of the mullins-sekerka problem,, Comm. In. PDE, 21 (1996), 1705.  doi: 10.1016/j.jde.2004.10.028.  Google Scholar

[5]

X. Chen and F. Retich, Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling,, J. Math. Anal. Appl., 164 (1992), 350.  doi: 10.1016/0022-247X(92)90119-X.  Google Scholar

[6]

E. Milakis and L. E. Silvestre, Regularity for fully nonlinear elliptic equations with neumann boundary data,, Com. in Partial Differential Equations, 31 (2006), 1227.  doi: 10.1080/03605300600634999.  Google Scholar

[7]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", vol. 30 of PMS. Princeton University Press, (1971).   Google Scholar

[8]

L. Wang, On the regularity theory of fully nonlinear parabolic equations. I,, Comm. Pure Appl. Math., 45 (1992), 27.   Google Scholar

[9]

L. Wang, On the regularity theory of fully nonlinear parabolic equations. II,, Comm. Pure Appl. Math., 45 (1992), 141.   Google Scholar

show all references

References:
[1]

L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations,, Ann. Math., 130 (1989), 189.  doi: 10.2307/1971480.  Google Scholar

[2]

L. A. Caffarelli, The obstacle problem revisited,, J. Fourier Anal. Appl., 4 (1998), 383.  doi: 10.1007/BF02498216.  Google Scholar

[3]

L. A. Caffarelli, "The Obstacle Problem. Lezioni Fermiane," [Fermi Lectures],, Accademia Nazionale dei Lincei, (1998).   Google Scholar

[4]

X. Chen, J. Hong and F. Yi, Existence,uniqueness,and regularity of classical solutions of the mullins-sekerka problem,, Comm. In. PDE, 21 (1996), 1705.  doi: 10.1016/j.jde.2004.10.028.  Google Scholar

[5]

X. Chen and F. Retich, Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling,, J. Math. Anal. Appl., 164 (1992), 350.  doi: 10.1016/0022-247X(92)90119-X.  Google Scholar

[6]

E. Milakis and L. E. Silvestre, Regularity for fully nonlinear elliptic equations with neumann boundary data,, Com. in Partial Differential Equations, 31 (2006), 1227.  doi: 10.1080/03605300600634999.  Google Scholar

[7]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", vol. 30 of PMS. Princeton University Press, (1971).   Google Scholar

[8]

L. Wang, On the regularity theory of fully nonlinear parabolic equations. I,, Comm. Pure Appl. Math., 45 (1992), 27.   Google Scholar

[9]

L. Wang, On the regularity theory of fully nonlinear parabolic equations. II,, Comm. Pure Appl. Math., 45 (1992), 141.   Google Scholar

[1]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[2]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[3]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[4]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[5]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[6]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[7]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[8]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[9]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[10]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[11]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[14]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[15]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[16]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]