May  2012, 11(3): 1051-1062. doi: 10.3934/cpaa.2012.11.1051

A faithful symbolic extension

1. 

Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Received  November 2010 Revised  February 2011 Published  December 2011

We construct a symbolic extension of an aperiodic zero-dimensional topological system in such a way that the bonding map is one-to-one on the set of invariant measures.
Citation: Jacek Serafin. A faithful symbolic extension. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1051-1062. doi: 10.3934/cpaa.2012.11.1051
References:
[1]

M. Boyle, Lower entropy factors of sofic systems,, Ergodic Theory and Dynam. Systems, 3 (1983), 541.  doi: 10.1017/S0143385700002133.  Google Scholar

[2]

M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions,, Invent. Math., 156 (2004), 119.  doi: 10.1007/s00222-003-0335-2.  Google Scholar

[3]

M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers,, Forum Math., 14 (2002), 713.  doi: 10.1515/form.2002.031.  Google Scholar

[4]

D. Burguet, Examples of $C^r$ interval maps with large symbolic extension entropy,, Discrete Contin. Dyn. Syst., 26 (2010), 873.  doi: 10.3934/dcds.2010.26.873.  Google Scholar

[5]

T. Downarowicz, Entropy of a symbolic extension of a totally disconnected dynamical system,, Ergodic Theory and Dynam. Systems, 21 (2001), 1051.  doi: 10.1017/S014338570100150X.  Google Scholar

[6]

T. Downarowicz, Entropy structure,, J. Anal. Math., 96 (2005), 57.  doi: 10.1007/BF02787825.  Google Scholar

[7]

T. Downarowicz, Minimal models for noninvertible and not uniquely ergodic systems,, Israel J. Math., 156 (2006), 93.  doi: 10.1007/BF02773826.  Google Scholar

[8]

T. Downarowicz, "Entropy in Dynamical Systems," New Mathematical Monographs, No. 18,, Cambridge University Press, (2011).   Google Scholar

[9]

T. Downarowicz and A. Maass, Smooth interval maps have symbolic extensions: the antarctic theorem,, Invent. Math., 176 (2009), 617.  doi: 10.1007/s00222-008-0172-4.  Google Scholar

[10]

T. Downarowicz and S. E. Newhouse, Symbolic extensions and smooth dynamical systems,, Invent. Math., 160 (2005), 453.  doi: 10.1007/s00222-004-0413-0.  Google Scholar

[11]

E. Lindenstrauss, Lowering topological entropy,, J. Anal. Math., 67 (1995), 231.  doi: 10.1007/BF02787792.  Google Scholar

[12]

J. Serafin, Universally finitary symbolic extensions,, Fund. Math., 206 (2009), 281.  doi: 10.4064/fm206-0-16.  Google Scholar

show all references

References:
[1]

M. Boyle, Lower entropy factors of sofic systems,, Ergodic Theory and Dynam. Systems, 3 (1983), 541.  doi: 10.1017/S0143385700002133.  Google Scholar

[2]

M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions,, Invent. Math., 156 (2004), 119.  doi: 10.1007/s00222-003-0335-2.  Google Scholar

[3]

M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers,, Forum Math., 14 (2002), 713.  doi: 10.1515/form.2002.031.  Google Scholar

[4]

D. Burguet, Examples of $C^r$ interval maps with large symbolic extension entropy,, Discrete Contin. Dyn. Syst., 26 (2010), 873.  doi: 10.3934/dcds.2010.26.873.  Google Scholar

[5]

T. Downarowicz, Entropy of a symbolic extension of a totally disconnected dynamical system,, Ergodic Theory and Dynam. Systems, 21 (2001), 1051.  doi: 10.1017/S014338570100150X.  Google Scholar

[6]

T. Downarowicz, Entropy structure,, J. Anal. Math., 96 (2005), 57.  doi: 10.1007/BF02787825.  Google Scholar

[7]

T. Downarowicz, Minimal models for noninvertible and not uniquely ergodic systems,, Israel J. Math., 156 (2006), 93.  doi: 10.1007/BF02773826.  Google Scholar

[8]

T. Downarowicz, "Entropy in Dynamical Systems," New Mathematical Monographs, No. 18,, Cambridge University Press, (2011).   Google Scholar

[9]

T. Downarowicz and A. Maass, Smooth interval maps have symbolic extensions: the antarctic theorem,, Invent. Math., 176 (2009), 617.  doi: 10.1007/s00222-008-0172-4.  Google Scholar

[10]

T. Downarowicz and S. E. Newhouse, Symbolic extensions and smooth dynamical systems,, Invent. Math., 160 (2005), 453.  doi: 10.1007/s00222-004-0413-0.  Google Scholar

[11]

E. Lindenstrauss, Lowering topological entropy,, J. Anal. Math., 67 (1995), 231.  doi: 10.1007/BF02787792.  Google Scholar

[12]

J. Serafin, Universally finitary symbolic extensions,, Fund. Math., 206 (2009), 281.  doi: 10.4064/fm206-0-16.  Google Scholar

[1]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[2]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[3]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[4]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[5]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[6]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[7]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[8]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[9]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[12]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[13]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[14]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[15]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[16]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[17]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[18]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[19]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[20]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]