May  2012, 11(3): 1063-1079. doi: 10.3934/cpaa.2012.11.1063

On asymptotic stability of solitons in a nonlinear Schrödinger equation

1. 

Faculty of Mathematics of Vienna University, Vienna, Australia

2. 

IITP RAS, Moscow, Russian Federation

3. 

Centre for Mathematical Sciences, Cambridge, United Kingdom

Received  November 2010 Revised  May 2011 Published  December 2011

The long-time asymptotics is analyzed for finite energy solutions of the 1D Schrödinger equation coupled to a nonlinear oscillator through a localized nonlinearity. The coupled system is $U(1)$ invariant. This article, which extends the results of a previous one, provides a proof of asymptotic stability of the solitary wave solutions in the case that the linearization contains a single discrete oscillatory mode satisfying a non-degeneracy assumption of the type known as the Fermi Golden Rule.
Citation: Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063
References:
[1]

V. Buslaev, A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitary waves in a nonlinear Schrödinger equation,, Comm. Partial Diff. Eqns., (2008), 669.  doi: 10.1080/03605300801970937.  Google Scholar

[2]

V. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations,, Ann. Inst. Henri Poincaré, 20 (2003), 419.  doi: 10.1016/S0294-1449(02)00018-5.  Google Scholar

[3]

A. I. Komech and A. A. Komech, Global well-posedness for the Schrödinger equation coupled to a nonlinear oscillator,, Russ. J. Math. Phys., 14 (2007), 164.  doi: 10.1134/S1061920807020057.  Google Scholar

[4]

A. Komech and E.Kopylova, On Asymptotic stability of moving kink for relativistic Ginsburg-Landau equation,, Commun. Math. Phys., 302 (2011), 225.  doi: 10.1007/s00220-010-1184-7.  Google Scholar

[5]

A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitons for nonlinear Schrödinger equation,, preprint, ().   Google Scholar

[6]

M. Merkli and I. M. Sigal, A time-dependent theory of quantum resonances,, Commun. Math. Phys., 201 (1999), 549.  doi: 10.1007/s002200050568.  Google Scholar

[7]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves,, Commun. Math. Phys., 164 (1994), 305.  doi: 10.1007/BF02101705.  Google Scholar

[8]

C. A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations,, J. Diff. Eqns, 141 (1997), 310.  doi: 10.1006/jdeq1997.3345.  Google Scholar

[9]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations,, Invent. Math., 136 (1999), 9.  doi: 10.1007/s002220050303.  Google Scholar

[10]

A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrodinger equations,, Rev. Math. Phys., 16 (2004), 977.  doi: 10.1142/S0129055X04002175.  Google Scholar

show all references

References:
[1]

V. Buslaev, A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitary waves in a nonlinear Schrödinger equation,, Comm. Partial Diff. Eqns., (2008), 669.  doi: 10.1080/03605300801970937.  Google Scholar

[2]

V. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations,, Ann. Inst. Henri Poincaré, 20 (2003), 419.  doi: 10.1016/S0294-1449(02)00018-5.  Google Scholar

[3]

A. I. Komech and A. A. Komech, Global well-posedness for the Schrödinger equation coupled to a nonlinear oscillator,, Russ. J. Math. Phys., 14 (2007), 164.  doi: 10.1134/S1061920807020057.  Google Scholar

[4]

A. Komech and E.Kopylova, On Asymptotic stability of moving kink for relativistic Ginsburg-Landau equation,, Commun. Math. Phys., 302 (2011), 225.  doi: 10.1007/s00220-010-1184-7.  Google Scholar

[5]

A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitons for nonlinear Schrödinger equation,, preprint, ().   Google Scholar

[6]

M. Merkli and I. M. Sigal, A time-dependent theory of quantum resonances,, Commun. Math. Phys., 201 (1999), 549.  doi: 10.1007/s002200050568.  Google Scholar

[7]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves,, Commun. Math. Phys., 164 (1994), 305.  doi: 10.1007/BF02101705.  Google Scholar

[8]

C. A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations,, J. Diff. Eqns, 141 (1997), 310.  doi: 10.1006/jdeq1997.3345.  Google Scholar

[9]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations,, Invent. Math., 136 (1999), 9.  doi: 10.1007/s002220050303.  Google Scholar

[10]

A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrodinger equations,, Rev. Math. Phys., 16 (2004), 977.  doi: 10.1142/S0129055X04002175.  Google Scholar

[1]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[2]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[3]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[4]

Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005

[5]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[6]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[7]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[8]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[9]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[10]

David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327

[11]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[12]

Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793

[13]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[14]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[15]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[16]

Yi He, Gongbao Li. Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. Mathematical Control & Related Fields, 2016, 6 (4) : 551-593. doi: 10.3934/mcrf.2016016

[17]

Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085

[18]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[19]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[20]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]