May  2012, 11(3): 1111-1127. doi: 10.3934/cpaa.2012.11.1111

Remarks on a two dimensional BBM type equation

1. 

School of Mathematics and Computer Science, Damghan University, Damghan, Postal Code 36716--41167, Iran

Received  November 2010 Revised  August 2011 Published  December 2011

In this work, we study a two-dimensional version of the BBM equation. We prove that the Cauchy problem for this equation is globally well-posed in a natural space. We also show that the orbital stability of the solitary waves of the equation. Furthermore, we establish that if the solution of the Cauchy problem has a compact support for all times, then this solution vanishes identically.
Citation: Amin Esfahani. Remarks on a two dimensional BBM type equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1111-1127. doi: 10.3934/cpaa.2012.11.1111
References:
[1]

M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations,, Chaos, 31 (2007), 95.  doi: 10.1016/j.chaos.2005.09.030.  Google Scholar

[2]

M. J. Ablowitz and P. A. Clarkson, "Solitons, Nonlinear Evolution Equations and Inverse Scattering,'', Cambridge University Press (London Alath. Soc. Lecture Note Series 149), (1991).   Google Scholar

[3]

H. Berestycki, T. Gallouët and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan,, C. R. Acad. Sci. Paris S\'er. I Math., 297 (1983), 307.   Google Scholar

[4]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[5]

J. L. Bona, Y. Liu and M. M. Tom, The Cauchy problem and stability of solitary-wave solutions for RLW-KP-type equations,, J. Differential Equations, 185 (2002), 437.  doi: 10.1006/jdeq.2002.4171.  Google Scholar

[6]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[7]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations,, Geom. Funct. Anal., 3 (1993), 107.  doi: 10.1007/BF01896020.  Google Scholar

[9]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209.  doi: 10.1007/BF01895688.  Google Scholar

[10]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation,, Geom. Funct. Anal., 3 (1993), 315.  doi: 10.1007/BF01896259.  Google Scholar

[11]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Commun. Math. Phys., 85 (1982), 549.  doi: 10.1007/BF01403504.  Google Scholar

[12]

A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 46 (2005).  doi: 10.1063/1.1845603.  Google Scholar

[13]

A. de Bouard, Stability and instability of some nonlinear dispersive solitary waves in higher dimension,, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 89.  doi: 10.1017/S0308210500030614.  Google Scholar

[14]

A. V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation,, J. Differ. Equ., 31 (1995), 1002.   Google Scholar

[15]

J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain),, Ast\'erisque, 4 (1996), 163.   Google Scholar

[16]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[17]

J. Hammack and H. Segur, The Kortweg-de Vries equation and water waves. II. Comparison with experiments,, J. Fluid Mech., 65 (1974), 289.  doi: 10.1017/S002211207400139X.  Google Scholar

[18]

M. A. Johnson, The transverse instability of periodic waves in Zakharov-Kuznetsov type equations,, Studies in Applied Mathematics, 124 (2010), 323.  doi: 10.1111/j.1467-9590.2009.00473.x.  Google Scholar

[19]

F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation,, SIAM J. Math. Anal., 41 (2009), 1323.  doi: 10.1137/080739173.  Google Scholar

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I.,, Ann. Inst. H. Poincar\'e, 1 (1984), 109.   Google Scholar

[21]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II.,, Ann. Inst. H. Poincar\'e, 4 (1984), 223.   Google Scholar

[22]

Y. Mammeri, Unique continuation property for the KP-BBM-II equation,, Differential Integral Equations, 22 (2009), 393.   Google Scholar

[23]

L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations,, J. Differential Equations, 152 (1999), 30.  doi: 10.1006/jdeq.1998.3522.  Google Scholar

[24]

M. Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation,, Nonlinear Anal., 29 (2004), 425.  doi: 10.1016/j.na.2004.07.022.  Google Scholar

[25]

S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.   Google Scholar

[26]

J.-C. Saut and N. Tzvetkov, Global well-posedness for the KP-BBM equations,, Appl. Math. Res. Express, 1 (2004), 1.  doi: 10.1155/S1687120004010718.  Google Scholar

[27]

J.-C. Saut and N. Tzvetkov, On periodic KP-I type equations,, Comm. Math. Phys., 221 (2001), 451.  doi: 10.1007/PL00005577.  Google Scholar

[28]

S. K. Turitsyn, J. J. Rasmussen and M. A. Raadu, "Stability of Weak Double Layers,'', Royal Institute of Technology, (1991), 91.   Google Scholar

[29]

A. M. Wazwaz, Compact and noncompact physical structures for the ZK-BBM equation,, Appl. Math. Comput., 169 (2005), 713.  doi: 10.1016/j.amc.2004.09.062.  Google Scholar

[30]

N. J. Zabusky and C. Galvin, Shallow-water waves, the Korteweg-de Vries equation and solitons,, J. Fluid Mech., 47 (1971), 811.   Google Scholar

[31]

V. E. Zakharov and E. A. Kuznetsov, Three dimensional solitons,, Sov. Phys. JETP, 39 (1974), 285.   Google Scholar

show all references

References:
[1]

M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations,, Chaos, 31 (2007), 95.  doi: 10.1016/j.chaos.2005.09.030.  Google Scholar

[2]

M. J. Ablowitz and P. A. Clarkson, "Solitons, Nonlinear Evolution Equations and Inverse Scattering,'', Cambridge University Press (London Alath. Soc. Lecture Note Series 149), (1991).   Google Scholar

[3]

H. Berestycki, T. Gallouët and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan,, C. R. Acad. Sci. Paris S\'er. I Math., 297 (1983), 307.   Google Scholar

[4]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[5]

J. L. Bona, Y. Liu and M. M. Tom, The Cauchy problem and stability of solitary-wave solutions for RLW-KP-type equations,, J. Differential Equations, 185 (2002), 437.  doi: 10.1006/jdeq.2002.4171.  Google Scholar

[6]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[7]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations,, Geom. Funct. Anal., 3 (1993), 107.  doi: 10.1007/BF01896020.  Google Scholar

[9]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209.  doi: 10.1007/BF01895688.  Google Scholar

[10]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation,, Geom. Funct. Anal., 3 (1993), 315.  doi: 10.1007/BF01896259.  Google Scholar

[11]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Commun. Math. Phys., 85 (1982), 549.  doi: 10.1007/BF01403504.  Google Scholar

[12]

A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 46 (2005).  doi: 10.1063/1.1845603.  Google Scholar

[13]

A. de Bouard, Stability and instability of some nonlinear dispersive solitary waves in higher dimension,, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 89.  doi: 10.1017/S0308210500030614.  Google Scholar

[14]

A. V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation,, J. Differ. Equ., 31 (1995), 1002.   Google Scholar

[15]

J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain),, Ast\'erisque, 4 (1996), 163.   Google Scholar

[16]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[17]

J. Hammack and H. Segur, The Kortweg-de Vries equation and water waves. II. Comparison with experiments,, J. Fluid Mech., 65 (1974), 289.  doi: 10.1017/S002211207400139X.  Google Scholar

[18]

M. A. Johnson, The transverse instability of periodic waves in Zakharov-Kuznetsov type equations,, Studies in Applied Mathematics, 124 (2010), 323.  doi: 10.1111/j.1467-9590.2009.00473.x.  Google Scholar

[19]

F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation,, SIAM J. Math. Anal., 41 (2009), 1323.  doi: 10.1137/080739173.  Google Scholar

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I.,, Ann. Inst. H. Poincar\'e, 1 (1984), 109.   Google Scholar

[21]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II.,, Ann. Inst. H. Poincar\'e, 4 (1984), 223.   Google Scholar

[22]

Y. Mammeri, Unique continuation property for the KP-BBM-II equation,, Differential Integral Equations, 22 (2009), 393.   Google Scholar

[23]

L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations,, J. Differential Equations, 152 (1999), 30.  doi: 10.1006/jdeq.1998.3522.  Google Scholar

[24]

M. Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation,, Nonlinear Anal., 29 (2004), 425.  doi: 10.1016/j.na.2004.07.022.  Google Scholar

[25]

S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.   Google Scholar

[26]

J.-C. Saut and N. Tzvetkov, Global well-posedness for the KP-BBM equations,, Appl. Math. Res. Express, 1 (2004), 1.  doi: 10.1155/S1687120004010718.  Google Scholar

[27]

J.-C. Saut and N. Tzvetkov, On periodic KP-I type equations,, Comm. Math. Phys., 221 (2001), 451.  doi: 10.1007/PL00005577.  Google Scholar

[28]

S. K. Turitsyn, J. J. Rasmussen and M. A. Raadu, "Stability of Weak Double Layers,'', Royal Institute of Technology, (1991), 91.   Google Scholar

[29]

A. M. Wazwaz, Compact and noncompact physical structures for the ZK-BBM equation,, Appl. Math. Comput., 169 (2005), 713.  doi: 10.1016/j.amc.2004.09.062.  Google Scholar

[30]

N. J. Zabusky and C. Galvin, Shallow-water waves, the Korteweg-de Vries equation and solitons,, J. Fluid Mech., 47 (1971), 811.   Google Scholar

[31]

V. E. Zakharov and E. A. Kuznetsov, Three dimensional solitons,, Sov. Phys. JETP, 39 (1974), 285.   Google Scholar

[1]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[2]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[3]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[4]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[5]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[6]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[7]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[8]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[9]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[10]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[11]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[12]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[13]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[14]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[15]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[16]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[17]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[18]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[19]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[20]

Yongsheng Mi, Chunlai Mu, Pan Zheng. On the Cauchy problem of the modified Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2047-2072. doi: 10.3934/dcdss.2016084

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]