Advanced Search
Article Contents
Article Contents

Dynamics of a boundary spike for the shadow Gierer-Meinhardt system

Abstract Related Papers Cited by
  • The Gierer-Meinhardt system is a mathematical model describing the process of hydra regeneration. The authors of [3] showed that if an initial value is close to a spiky pattern and its peak is far away from the boundary, the solution of the shadow Gierer-Meinhardt system, called a interior spike solution, moves towards a point on boundary which is the closest to the peak. However it has not been studied how a solution close to a spiky pattern with the peak on the boundary, called a boundary spike solution moves along the boundary. In this paper, we consider the shadow Gierer-Meinhardt system and dynamics of a boundary spike solution. Our results state that a boundary spike moves towards a critical point of the curvature of the boundary and approaches a stable stationary solution.
    Mathematics Subject Classification: Primary 35B25, 35B35; Secondary 35K57, 35P15.


    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, P. W. Bates, X. Chen and G. Fusco, Mullins-Sekerka motion of small droplets on a fixed boundary, J. Geom. Anal., 10 (2000), 575-596.


    P. W. Bates, K. Lu and C. Zeng, Approximately invariant manifolds and global dynamics of spike states, Invent. Math., 174 (2008), 355-433.


    X. Chen and M. Kowalczyk, Slow dynamics of interior spikes in the shadow Gierer-Meinhardt system, Adv. Differential Equations, 6 (2001), 847-872.


    M. del Pino, P. L. Felmer and M. Kowalczyk, Boundary spikes in the Gierer-Meinhardt system, Commun. Pure Appl. Anal., 1 (2002), 437-456.doi: 10.3934/cpaa.2002.1.437.


    M. del Pino, P. L. Felmer and J. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal., 31 (1999), 63-79 (electronic).doi: 10.1137/S0036141098332834.


    M. del Pino, P. L. Felmer and J. Wei, On the role of distance function in some singular perturbation problems, Comm. Partial Differential Equations, 25 (2000), 155-177.doi: 10.1080/03605300008821511.


    S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. D. D. E. 14 (2002), 85-137.doi: 10.1023/A:1012980128575.


    S.-I. EiDynamics and their interaction of spikes on smoothly curved boundaries for reaction-diffusion systems in 2D, preprint.


    L. C. Evans, "Partial Differential Equations,'' Graduate Studies in Mathematics, 19, (1998).


    B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., 12 (1972), 30-39. Academic Press, (1981), 369-402.


    A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetic, 12 (1972), 30-39.doi: 10.1007/BF00289234.


    C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52 (2000), 522-538.doi: 10.4153/CJM-2000-024-x.


    D. Iron and M. J. Ward, The dynamics of boundary spikes for a nonlocal reaction-diffusion model, European J. Appl. Math., 11 (2000), 491-514.doi: 10.1017/S0956792500004253.


    D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150 (2001), 25-62.doi: 10.1016/S0167-2789(00)00206-2.


    C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.doi: 10.1016/0022-0396(88)90147-7.


    H. Meinhardt, "Models of Biological Pattern Formation,'' Academic Press, 1982.


    Y. Miyamoto, Stability of a boundary spike layer for the Gierer-Meinhardt system, European J. Appl. Math., 16 (2005), 467-491.doi: 10.1017/S0956792505006376.


    Y. Miyamoto, On the shape of the stable patterns for activator-inhibitor systems in two-dimensional domains, Quarterly of Applied Mathematics, 65 (2007), 357-374.


    W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.doi: 10.1002/cpa.3160440705.


    W.-M. Ni and I. Takagi, Locating the peaks of least energy solution to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.doi: 10.1215/S0012-7094-93-07004-4.


    W.-M. Ni, I. Takagi and E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model, Japan J. Indust. Appl. Math., 18, (2001), 259-272.


    Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.doi: 10.1137/0513037.


    J. Sherman and W. J. Morrison, Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Ann. Math. Statistics, 21 (1950), 124-127.


    A. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B, 327 (1952), 37-72.doi: 10.1098/rstb.1952.0012.


    J. Wei, On the boundary spike layer solutions to a singularly perturbed neumann problem, J. Diff. Eq., 134 (1997), 104-133.doi: 10.1006/jdeq.1996.3218.


    J. Wei, On single interior spike solutions of the Gierer-Meinhardt system: uniqueness and spectrum estimates, European J. Appl. Math., 10 (1999), 353-378.doi: 10.1017/S0956792599003770.


    J. Wei, On a nonlocal eigenvalue problem and its applications to point-condensations in reaction-diffusion systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1485-1496.doi: 10.1142/S0218127400000979.


    J. Wei, Uniqueness and critical spectrum of boundary spike solutions, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1457-1480.doi: 10.1017/S0308210500001487.


    J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: the weak coupling case, J. Nonlinear Sci., 11 (2001), 415-458.doi: 10.1007/s00332-001-0380-1.

  • 加载中

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint