\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane

Abstract Related Papers Cited by
  • We prove one-dimensional symmetry of monotone solutions for some anisotropic quasilinear elliptic equations in the plane.
    Mathematics Subject Classification: 35J70, 35J60, 35B05, 35B09, 35B50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33. Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday.doi: 10.1023/A:1010602715526.

    [2]

    L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.doi: 10.1090/S0894-0347-00-00345-3.

    [3]

    I. Birindelli and E. Valdinoci, The Ginzburg-Landau equation in the Heisenberg group, Commun. Contemp. Math., 10 (2008), 671-719.doi: 10.1142/S0219199708002946.

    [4]

    L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of $m$-Laplace equations, J. Differential Equations, 206 (2004), 483-515.doi: 10.1016/j.jde.2004.05.012.

    [5]

    E. De Giorgi, Convergence problems for functionals and operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora (1979), 131-188.

    [6]

    M. Del Pino, M. Kowalczyk and J. Wei, A counterexample to a conjecture by De Giorgi in large dimensions, C. R. Math. Acad. Sci. Paris, 346 (2008), 1261-1266.doi: 10.1016/j.crma.2008.10.010.

    [7]

    D. De Silva and O. Savin, Symmetry of global solutions to a class of fully nonlinear elliptic equations in $2$D, Indiana Univ. Math. J., 58 (2009), 301-315.doi: 10.1512/iumj.2009.58.3396.

    [8]

    A. Farina, Symmetry for solutions of semilinear elliptic equations in $R^N$ and related conjectures, Ricerche Mat., 48 (suppl.), Papers in memory of Ennio De Giorgi, (1999), 129-154.doi: 2001h:35056.

    [9]

    A. Farina, Propriétés qualitatives de solutions d'équations et systèmes d'équations non-linéaires, Habilitation à diriger des recherches, Paris VI, 2002.

    [10]

    A. Farina, One-dimensional symmetry for solutions of quasilinear equations in $R^2$, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6 (2003), 685-692.doi: 2005h:35093.

    [11]

    A. Farina, Liouville-type theorems for elliptic problems, in "Handbook of Differential Equations: Stationary Partial Differential Equations. vol. IV,"doi: 10.1016/S1874-5733(07)80005-2.

    [12]

    A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 7 (2008), 741-791.doi: 2009j:58020.

    [13]

    A. Farina, B. Sciunzi and E. Valdinoci, On a Poincaré type formula for solutions of singular and degenerate elliptic equations, Manuscripta Math., 132 (2010), 335-342.doi: 10.1007/s00229-010-0349-1.

    [14]

    A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on riemannian manifolds, Preprint, 2008.

    [15]

    A. Farina and E. Valdinoci, Geometry of quasiminimal phase transitions, Calc. Var. Partial Differential Equations, 33 (2008), 1-35.doi: 10.1007/s00526-007-0146-1.

    [16]

    A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, Ser. Adv. Math. Appl. Sci. World Sci. Publ., Hackensack, NJ, (2008).doi: 10.1142/9789812834744_0004.

    [17]

    A. Farina and E. Valdinoci, 1D symmetry for solutions of semilinear and quasilinear elliptic equations, Trans. Amer Math. Soc., 363 (2011), 579-609.doi: 10.1090/S0002-9947-2010-05021-4.

    [18]

    F. Ferrari and E. Valdinoci, A geometric inequality in the Heisenberg group and its applications to stable solutions of semilinear problems, Math. Ann., 343 (2009), 351-370.doi: 10.1007/s00208-008-0274-8.

    [19]

    I. Fragalà, F. Gazzola and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 715-734.doi: 10.1016/j.anihpc.2003.12.001.

    [20]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer, Berlin, 1997.doi: 2001k:35004.

    [21]

    N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.doi: 10.1007/s002080050196.

    [22]

    P. Le and B. SciunziRegularity of solutions of degenerate quasilinear elliptic equations, In preparation.

    [23]

    N. G. Meyers and J. Serrin, $H=W$, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), 1055-1056.

    [24]

    M. Mihâilescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687-698.doi: 10.1016/j.jmaa.2007.09.015.

    [25]

    J. Rácosník, Some remarks to anisotropic Sobolev spaces I, Beitrage Anal., 13 (1979), 55-68.

    [26]

    J. Rácosník, Some remarks to anisotropic Sobolev spaces II, Beitrage Anal., 15 (1981), 127-140.

    [27]

    O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78.doi: 2009m:58025.

    [28]

    B. Sciunzi and E. Valdinoci, Mean curvature properties for $p$-Laplace phase transitions, J. Eur. Math. Soc. (JEMS), 7 (2005), 319-359.doi: 006m:35055.

    [29]

    E. Valdinoci, B. Sciunzi and O. Savin, Flat level set regularity of $p$-Laplace phase transitions, Mem. Amer. Math. Soc., 182 (2006).doi: 10.4007/annals.2009.169.41.

    [30]

    Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.doi: 10.1016/j.jfa.2009.01.020.

    [31]

    P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational. Mech. Anal., 141 (1998), 375-400.doi: 99c:49045.

    [32]

    M. Troisi, Teoremi di inclusioni per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969), 3-24.

    [33]

    L. Ven'tuan, On embedding theorems for spaces of functions with partial derivatives of various degree of summability, Vestnik Leingrad. Univ., 16 (1961), 23-37.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return