Citation: |
[1] |
G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33. Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday.doi: 10.1023/A:1010602715526. |
[2] |
L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.doi: 10.1090/S0894-0347-00-00345-3. |
[3] |
I. Birindelli and E. Valdinoci, The Ginzburg-Landau equation in the Heisenberg group, Commun. Contemp. Math., 10 (2008), 671-719.doi: 10.1142/S0219199708002946. |
[4] |
L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of $m$-Laplace equations, J. Differential Equations, 206 (2004), 483-515.doi: 10.1016/j.jde.2004.05.012. |
[5] |
E. De Giorgi, Convergence problems for functionals and operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora (1979), 131-188. |
[6] |
M. Del Pino, M. Kowalczyk and J. Wei, A counterexample to a conjecture by De Giorgi in large dimensions, C. R. Math. Acad. Sci. Paris, 346 (2008), 1261-1266.doi: 10.1016/j.crma.2008.10.010. |
[7] |
D. De Silva and O. Savin, Symmetry of global solutions to a class of fully nonlinear elliptic equations in $2$D, Indiana Univ. Math. J., 58 (2009), 301-315.doi: 10.1512/iumj.2009.58.3396. |
[8] |
A. Farina, Symmetry for solutions of semilinear elliptic equations in $R^N$ and related conjectures, Ricerche Mat., 48 (suppl.), Papers in memory of Ennio De Giorgi, (1999), 129-154.doi: 2001h:35056. |
[9] |
A. Farina, Propriétés qualitatives de solutions d'équations et systèmes d'équations non-linéaires, Habilitation à diriger des recherches, Paris VI, 2002. |
[10] |
A. Farina, One-dimensional symmetry for solutions of quasilinear equations in $R^2$, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6 (2003), 685-692.doi: 2005h:35093. |
[11] |
A. Farina, Liouville-type theorems for elliptic problems, in "Handbook of Differential Equations: Stationary Partial Differential Equations. vol. IV,"doi: 10.1016/S1874-5733(07)80005-2. |
[12] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 7 (2008), 741-791.doi: 2009j:58020. |
[13] |
A. Farina, B. Sciunzi and E. Valdinoci, On a Poincaré type formula for solutions of singular and degenerate elliptic equations, Manuscripta Math., 132 (2010), 335-342.doi: 10.1007/s00229-010-0349-1. |
[14] |
A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on riemannian manifolds, Preprint, 2008. |
[15] |
A. Farina and E. Valdinoci, Geometry of quasiminimal phase transitions, Calc. Var. Partial Differential Equations, 33 (2008), 1-35.doi: 10.1007/s00526-007-0146-1. |
[16] |
A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, Ser. Adv. Math. Appl. Sci. World Sci. Publ., Hackensack, NJ, (2008).doi: 10.1142/9789812834744_0004. |
[17] |
A. Farina and E. Valdinoci, 1D symmetry for solutions of semilinear and quasilinear elliptic equations, Trans. Amer Math. Soc., 363 (2011), 579-609.doi: 10.1090/S0002-9947-2010-05021-4. |
[18] |
F. Ferrari and E. Valdinoci, A geometric inequality in the Heisenberg group and its applications to stable solutions of semilinear problems, Math. Ann., 343 (2009), 351-370.doi: 10.1007/s00208-008-0274-8. |
[19] |
I. Fragalà, F. Gazzola and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 715-734.doi: 10.1016/j.anihpc.2003.12.001. |
[20] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer, Berlin, 1997.doi: 2001k:35004. |
[21] |
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.doi: 10.1007/s002080050196. |
[22] |
P. Le and B. Sciunzi, Regularity of solutions of degenerate quasilinear elliptic equations, In preparation. |
[23] |
N. G. Meyers and J. Serrin, $H=W$, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), 1055-1056. |
[24] |
M. Mihâilescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687-698.doi: 10.1016/j.jmaa.2007.09.015. |
[25] |
J. Rácosník, Some remarks to anisotropic Sobolev spaces I, Beitrage Anal., 13 (1979), 55-68. |
[26] |
J. Rácosník, Some remarks to anisotropic Sobolev spaces II, Beitrage Anal., 15 (1981), 127-140. |
[27] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78.doi: 2009m:58025. |
[28] |
B. Sciunzi and E. Valdinoci, Mean curvature properties for $p$-Laplace phase transitions, J. Eur. Math. Soc. (JEMS), 7 (2005), 319-359.doi: 006m:35055. |
[29] |
E. Valdinoci, B. Sciunzi and O. Savin, Flat level set regularity of $p$-Laplace phase transitions, Mem. Amer. Math. Soc., 182 (2006).doi: 10.4007/annals.2009.169.41. |
[30] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.doi: 10.1016/j.jfa.2009.01.020. |
[31] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational. Mech. Anal., 141 (1998), 375-400.doi: 99c:49045. |
[32] |
M. Troisi, Teoremi di inclusioni per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969), 3-24. |
[33] |
L. Ven'tuan, On embedding theorems for spaces of functions with partial derivatives of various degree of summability, Vestnik Leingrad. Univ., 16 (1961), 23-37. |