Advanced Search
Article Contents
Article Contents

Limits of anisotropic and degenerate elliptic problems

Abstract Related Papers Cited by
  • This paper analyzes the behavior of solutions for anisotropic problems of $(p_i)$-Laplacian type as the exponents go to infinity. We show that solutions converge uniformly to a function that solves, in the viscosity sense, a certain problem that we identify. The results are presented in a two-dimensional setting but can be extended to any dimension.
    Mathematics Subject Classification: Primary: 35J20, 35J60; Secondary: 35J70, 35J92.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Aronsson, Extensions of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561.doi: 10.1007/BF02591928.


    G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math Soc., 41 (2004), 439-505.doi: 10.1090/S0273-0979-04-01035-3.


    E. N. Barron, L. C. Evans and R. Jensen, The infinity laplacian, Aronsson's equation and their generalizations, Trans. Amer. Math. Soc., 360 (2008), 77-101.doi: 10.1090/S0002-9947-07-04338-3.


    M. Belloni and B. Kawohl, The pseudo $p$-Laplace eigenvalue problem and viscosity solutions as $p \rightarrow \infty$, ESAIM COCV, 10 (2004), 28-52.doi: 10.1051/cocv:2003035.


    T. Bhattacharya, E. DiBenedetto and J. J. Manfredi, Limits as $p\rightarrow \infty$ of $\Delta_p u_p=f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, (1989), 15-68.


    L. Boccardo, P. Marcellini and C. Sbordone, $L^\infty$-regularity for variational problems with sharp non-standard growth conditions, Boll. Un. Mat. Ital. A, 4 (1990), 219-225.


    M. G. Crandall, A Visit with the $\infty$-Laplace Equation, in "Calculus of Variations and Nonlinear Partial Differential Equations" (C.I.M.E. Summer School, Cetraro, 2005), Lecture Notes in Math, vol. 1927, Springer, Berlin, 2008.doi: 10.1007/978-3-540-75914-0_3.


    M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.doi: 10.1090/S0273-0979-1992-00266-5.


    A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Adv. Nonlin. Stud., 9 (2009), 367-393.


    L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), viii+66 pp.


    I. Fragalà, F. Gazzola and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéeaire, 21 (2004), 715-734.doi: 10.1016/j.anihpc.2003.12.001.


    J. García-Azorero, J. J. Manfredi, I. Peral and J. D. Rossi, The Neumann problem for the $\infty$-Laplacian and the Monge-Kantorovich mass transfer problem, Nonlinear Anal., 66 (2007), 349-366.doi: 10.1016/j.na.2005.11.030.


    J. García-Azorero, J. J. Manfredi, I. Peral and J. D. Rossi, Limits for Monge-Kantorovich mass transport problems, Commun. Pure Appl. Anal., 7 (2008), 853-865.doi: 10.3934/cpaa.2008.7.853.


    T. Ishibashi and S. Koike, On fully nonlinear PDEs derived from variational problems of $L^p$ norms, SIAM J. Math. Anal., 33 (2001), 545-569.doi: 10.1137/S0036141000380000.


    H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type, Proc. Amer. Math. Soc., 100 (1987), 247-251.doi: 10.1090/S0002-9939-1987-0884461-3.


    H. Ishii and P. Loreti, Limits of solutions of $p$-Laplace equations as $p$ goes to infinity and related variational problems, SIAM J. Math. Anal., 37 (2005), 411-437.doi: 10.1137/S0036141004432827.


    R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.doi: 10.1007/BF00386368.


    P. Juutinen, Minimization problems for Lipschitz functions via viscosity solutions, Dissertation, University of Jyväskulä in Jyväskulä, 1998., Ann. Acad. Sci. Fenn. Math. Diss., 115 (1998), 53 pp.


    P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33 (2001), 699-717.doi: 10.1137/S0036141000372179.


    S. N. Kruzhkov and I. M. Kolodii, On the theory of anisotropic Sobolev spaces, Russian Math. Surveys, 38 (1983), 188-189.doi: 10.1070/RM1983v038n02ABEH003476.


    J. Leray and J. L. Lions, Quelques résultats de Višik sur les problèmes nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.doi: 10.1007/978-3-642-11030-6_1.


    J. J. Manfredi, J. D. Rossi and J. M. Urbano, $p(x)$-Harmonic functions with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2581-2595.doi: 10.1016/j.anihpc.2009.09.008.


    J. J. Manfredi, J. D. Rossi and J. M. Urbano, Limit as $p(x)\rightarrow \infty$ of $p(x)$-harmonic functions, Nonlinear Anal., 72 (2010), 309-315.doi: 10.1016/j.na.2009.06.054.


    S. M. Nikolskii, An imbedding theorem for functions with partial derivatives considered in different metrics, Izd. Akad. Nauk SSSR Ser. Mat., 22 (1958), 321-336.


    Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91-120.doi: 10.1215/00127094-2008-048.


    M. Pérez-Llanos and J. D. Rossi, An anisotropic infinity laplacian obtained as the limit of the anisotropic $(p,q)$-Laplacian, Commun. Contemp. Math., 13 (2011), 1-20.


    M. Pérez-Llanos and J. D. Rossi, The limit as $p(x) \rightarrow +\infty$ of solutions to the inhomogeneous Dirichlet problem of the $p(x)$-Laplacian, Nonlinear Anal., 73 (2010), 2027-2035.doi: 10.1016/j.na.2010.05.032.


    M. Pérez-Llanos and J. D. Rossi, Limits as $p(x) \to \infty$ of $p(x)$-harmonic functions with non-homogeneous Neumann boundary conditions, Contemporary Mathematics, 540 (2011), 187-201.


    M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969), 3-24.


    M. Troisi, Ulteriori contributi alla teoria degli spazi di Sobolev non isotropi, Ricerche Mat., 20 (1971), 90-117.

  • 加载中

Article Metrics

HTML views() PDF downloads(112) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint