-
Previous Article
Dynamics of non-autonomous nonclassical diffusion equations on $R^n$
- CPAA Home
- This Issue
-
Next Article
A representational formula for variational solutions to Hamilton-Jacobi equations
Limits of anisotropic and degenerate elliptic problems
1. | CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal, Portugal |
2. | Department of Mathematics, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal |
References:
[1] |
G. Aronsson, Extensions of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561.
doi: 10.1007/BF02591928. |
[2] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math Soc., 41 (2004), 439-505.
doi: 10.1090/S0273-0979-04-01035-3. |
[3] |
E. N. Barron, L. C. Evans and R. Jensen, The infinity laplacian, Aronsson's equation and their generalizations, Trans. Amer. Math. Soc., 360 (2008), 77-101.
doi: 10.1090/S0002-9947-07-04338-3. |
[4] |
M. Belloni and B. Kawohl, The pseudo $p$-Laplace eigenvalue problem and viscosity solutions as $p \rightarrow \infty$, ESAIM COCV, 10 (2004), 28-52.
doi: 10.1051/cocv:2003035. |
[5] |
T. Bhattacharya, E. DiBenedetto and J. J. Manfredi, Limits as $p\rightarrow \infty$ of $\Delta_p u_p=f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, (1989), 15-68. |
[6] |
L. Boccardo, P. Marcellini and C. Sbordone, $L^\infty$-regularity for variational problems with sharp non-standard growth conditions, Boll. Un. Mat. Ital. A, 4 (1990), 219-225. |
[7] |
M. G. Crandall, A Visit with the $\infty$-Laplace Equation, in "Calculus of Variations and Nonlinear Partial Differential Equations" (C.I.M.E. Summer School, Cetraro, 2005), Lecture Notes in Math, vol. 1927, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-75914-0_3. |
[8] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[9] |
A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Adv. Nonlin. Stud., 9 (2009), 367-393. |
[10] |
L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), viii+66 pp. |
[11] |
I. Fragalà, F. Gazzola and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéeaire, 21 (2004), 715-734.
doi: 10.1016/j.anihpc.2003.12.001. |
[12] |
J. García-Azorero, J. J. Manfredi, I. Peral and J. D. Rossi, The Neumann problem for the $\infty$-Laplacian and the Monge-Kantorovich mass transfer problem, Nonlinear Anal., 66 (2007), 349-366.
doi: 10.1016/j.na.2005.11.030. |
[13] |
J. García-Azorero, J. J. Manfredi, I. Peral and J. D. Rossi, Limits for Monge-Kantorovich mass transport problems, Commun. Pure Appl. Anal., 7 (2008), 853-865.
doi: 10.3934/cpaa.2008.7.853. |
[14] |
T. Ishibashi and S. Koike, On fully nonlinear PDEs derived from variational problems of $L^p$ norms, SIAM J. Math. Anal., 33 (2001), 545-569.
doi: 10.1137/S0036141000380000. |
[15] |
H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type, Proc. Amer. Math. Soc., 100 (1987), 247-251.
doi: 10.1090/S0002-9939-1987-0884461-3. |
[16] |
H. Ishii and P. Loreti, Limits of solutions of $p$-Laplace equations as $p$ goes to infinity and related variational problems, SIAM J. Math. Anal., 37 (2005), 411-437.
doi: 10.1137/S0036141004432827. |
[17] |
R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[18] |
P. Juutinen, Minimization problems for Lipschitz functions via viscosity solutions, Dissertation, University of Jyväskulä in Jyväskulä, 1998., Ann. Acad. Sci. Fenn. Math. Diss., 115 (1998), 53 pp. |
[19] |
P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33 (2001), 699-717.
doi: 10.1137/S0036141000372179. |
[20] |
S. N. Kruzhkov and I. M. Kolodii, On the theory of anisotropic Sobolev spaces, Russian Math. Surveys, 38 (1983), 188-189.
doi: 10.1070/RM1983v038n02ABEH003476. |
[21] |
J. Leray and J. L. Lions, Quelques résultats de Višik sur les problèmes nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.
doi: 10.1007/978-3-642-11030-6_1. |
[22] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano, $p(x)$-Harmonic functions with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2581-2595.
doi: 10.1016/j.anihpc.2009.09.008. |
[23] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano, Limit as $p(x)\rightarrow \infty$ of $p(x)$-harmonic functions, Nonlinear Anal., 72 (2010), 309-315.
doi: 10.1016/j.na.2009.06.054. |
[24] |
S. M. Nikolskii, An imbedding theorem for functions with partial derivatives considered in different metrics, Izd. Akad. Nauk SSSR Ser. Mat., 22 (1958), 321-336. |
[25] |
Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91-120.
doi: 10.1215/00127094-2008-048. |
[26] |
M. Pérez-Llanos and J. D. Rossi, An anisotropic infinity laplacian obtained as the limit of the anisotropic $(p,q)$-Laplacian, Commun. Contemp. Math., 13 (2011), 1-20. |
[27] |
M. Pérez-Llanos and J. D. Rossi, The limit as $p(x) \rightarrow +\infty$ of solutions to the inhomogeneous Dirichlet problem of the $p(x)$-Laplacian, Nonlinear Anal., 73 (2010), 2027-2035.
doi: 10.1016/j.na.2010.05.032. |
[28] |
M. Pérez-Llanos and J. D. Rossi, Limits as $p(x) \to \infty$ of $p(x)$-harmonic functions with non-homogeneous Neumann boundary conditions, Contemporary Mathematics, 540 (2011), 187-201. |
[29] |
M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969), 3-24. |
[30] |
M. Troisi, Ulteriori contributi alla teoria degli spazi di Sobolev non isotropi, Ricerche Mat., 20 (1971), 90-117. |
show all references
References:
[1] |
G. Aronsson, Extensions of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561.
doi: 10.1007/BF02591928. |
[2] |
G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math Soc., 41 (2004), 439-505.
doi: 10.1090/S0273-0979-04-01035-3. |
[3] |
E. N. Barron, L. C. Evans and R. Jensen, The infinity laplacian, Aronsson's equation and their generalizations, Trans. Amer. Math. Soc., 360 (2008), 77-101.
doi: 10.1090/S0002-9947-07-04338-3. |
[4] |
M. Belloni and B. Kawohl, The pseudo $p$-Laplace eigenvalue problem and viscosity solutions as $p \rightarrow \infty$, ESAIM COCV, 10 (2004), 28-52.
doi: 10.1051/cocv:2003035. |
[5] |
T. Bhattacharya, E. DiBenedetto and J. J. Manfredi, Limits as $p\rightarrow \infty$ of $\Delta_p u_p=f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, (1989), 15-68. |
[6] |
L. Boccardo, P. Marcellini and C. Sbordone, $L^\infty$-regularity for variational problems with sharp non-standard growth conditions, Boll. Un. Mat. Ital. A, 4 (1990), 219-225. |
[7] |
M. G. Crandall, A Visit with the $\infty$-Laplace Equation, in "Calculus of Variations and Nonlinear Partial Differential Equations" (C.I.M.E. Summer School, Cetraro, 2005), Lecture Notes in Math, vol. 1927, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-75914-0_3. |
[8] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[9] |
A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Adv. Nonlin. Stud., 9 (2009), 367-393. |
[10] |
L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), viii+66 pp. |
[11] |
I. Fragalà, F. Gazzola and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéeaire, 21 (2004), 715-734.
doi: 10.1016/j.anihpc.2003.12.001. |
[12] |
J. García-Azorero, J. J. Manfredi, I. Peral and J. D. Rossi, The Neumann problem for the $\infty$-Laplacian and the Monge-Kantorovich mass transfer problem, Nonlinear Anal., 66 (2007), 349-366.
doi: 10.1016/j.na.2005.11.030. |
[13] |
J. García-Azorero, J. J. Manfredi, I. Peral and J. D. Rossi, Limits for Monge-Kantorovich mass transport problems, Commun. Pure Appl. Anal., 7 (2008), 853-865.
doi: 10.3934/cpaa.2008.7.853. |
[14] |
T. Ishibashi and S. Koike, On fully nonlinear PDEs derived from variational problems of $L^p$ norms, SIAM J. Math. Anal., 33 (2001), 545-569.
doi: 10.1137/S0036141000380000. |
[15] |
H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type, Proc. Amer. Math. Soc., 100 (1987), 247-251.
doi: 10.1090/S0002-9939-1987-0884461-3. |
[16] |
H. Ishii and P. Loreti, Limits of solutions of $p$-Laplace equations as $p$ goes to infinity and related variational problems, SIAM J. Math. Anal., 37 (2005), 411-437.
doi: 10.1137/S0036141004432827. |
[17] |
R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[18] |
P. Juutinen, Minimization problems for Lipschitz functions via viscosity solutions, Dissertation, University of Jyväskulä in Jyväskulä, 1998., Ann. Acad. Sci. Fenn. Math. Diss., 115 (1998), 53 pp. |
[19] |
P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33 (2001), 699-717.
doi: 10.1137/S0036141000372179. |
[20] |
S. N. Kruzhkov and I. M. Kolodii, On the theory of anisotropic Sobolev spaces, Russian Math. Surveys, 38 (1983), 188-189.
doi: 10.1070/RM1983v038n02ABEH003476. |
[21] |
J. Leray and J. L. Lions, Quelques résultats de Višik sur les problèmes nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.
doi: 10.1007/978-3-642-11030-6_1. |
[22] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano, $p(x)$-Harmonic functions with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2581-2595.
doi: 10.1016/j.anihpc.2009.09.008. |
[23] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano, Limit as $p(x)\rightarrow \infty$ of $p(x)$-harmonic functions, Nonlinear Anal., 72 (2010), 309-315.
doi: 10.1016/j.na.2009.06.054. |
[24] |
S. M. Nikolskii, An imbedding theorem for functions with partial derivatives considered in different metrics, Izd. Akad. Nauk SSSR Ser. Mat., 22 (1958), 321-336. |
[25] |
Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91-120.
doi: 10.1215/00127094-2008-048. |
[26] |
M. Pérez-Llanos and J. D. Rossi, An anisotropic infinity laplacian obtained as the limit of the anisotropic $(p,q)$-Laplacian, Commun. Contemp. Math., 13 (2011), 1-20. |
[27] |
M. Pérez-Llanos and J. D. Rossi, The limit as $p(x) \rightarrow +\infty$ of solutions to the inhomogeneous Dirichlet problem of the $p(x)$-Laplacian, Nonlinear Anal., 73 (2010), 2027-2035.
doi: 10.1016/j.na.2010.05.032. |
[28] |
M. Pérez-Llanos and J. D. Rossi, Limits as $p(x) \to \infty$ of $p(x)$-harmonic functions with non-homogeneous Neumann boundary conditions, Contemporary Mathematics, 540 (2011), 187-201. |
[29] |
M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969), 3-24. |
[30] |
M. Troisi, Ulteriori contributi alla teoria degli spazi di Sobolev non isotropi, Ricerche Mat., 20 (1971), 90-117. |
[1] |
Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683 |
[2] |
Bernd Kawohl, Friedemann Schuricht. First eigenfunctions of the 1-Laplacian are viscosity solutions. Communications on Pure and Applied Analysis, 2015, 14 (1) : 329-339. doi: 10.3934/cpaa.2015.14.329 |
[3] |
Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019 |
[4] |
Nikolaos S. Papageorgiou, George Smyrlis. Positive solutions for parametric $p$-Laplacian equations. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1545-1570. doi: 10.3934/cpaa.2016002 |
[5] |
Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure and Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941 |
[6] |
Leszek Gasiński, Nikolaos S. Papageorgiou. Three nontrivial solutions for periodic problems with the $p$-Laplacian and a $p$-superlinear nonlinearity. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1421-1437. doi: 10.3934/cpaa.2009.8.1421 |
[7] |
Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715 |
[8] |
Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 |
[9] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1837-1855. doi: 10.3934/dcdss.2021007 |
[10] |
Guowei Dai. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5323-5345. doi: 10.3934/dcds.2016034 |
[11] |
Marek Galewski, Renata Wieteska. Multiple periodic solutions to a discrete $p^{(k)}$ - Laplacian problem. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2535-2547. doi: 10.3934/dcdsb.2014.19.2535 |
[12] |
Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 |
[13] |
Anna Maria Candela, Addolorata Salvatore. Positive solutions for some generalized $ p $–Laplacian type problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1935-1945. doi: 10.3934/dcdss.2020151 |
[14] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922 |
[15] |
Yuxiang Zhang, Shiwang Ma. Some existence results on periodic and subharmonic solutions of ordinary $P$-Laplacian systems. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 251-260. doi: 10.3934/dcdsb.2009.12.251 |
[16] |
Michael Filippakis, Alexandru Kristály, Nikolaos S. Papageorgiou. Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 405-440. doi: 10.3934/dcds.2009.24.405 |
[17] |
Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure and Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019 |
[18] |
L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure and Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9 |
[19] |
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447 |
[20] |
Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]