May  2012, 11(3): 1231-1252. doi: 10.3934/cpaa.2012.11.1231

Dynamics of non-autonomous nonclassical diffusion equations on $R^n$

1. 

Department of Mathematics, Hanoi National University of Education, 36 Xuan Thuy, Cau Giay, Hanoi, Vietnam

2. 

Faculty of Applied Mathematics and Informatics, Hanoi University of Science and Technology, No 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

Received  December 2010 Revised  May 2011 Published  December 2011

We consider the Cauchy problem for a non-autonomous nonclassical diffusion equation of the form $u_t-\varepsilon\Delta u_t - \Delta u+f(u)+\lambda u=g(t)$ on $R^n$. Under an arbitrary polynomial growth order of the nonlinearity $f$ and a suitable exponent growth of the external force $g$, using the method of tail-estimates and the asymptotic a priori estimate method, we prove the existence of an $(H^{1}(R^n) L^{p}(R^n), H^{1}(R^n) L^{p}(R^n))$ - pullback attractor $\hat{A}_{\varepsilon}$ for the process associated to the problem. We also prove the upper semicontinuity of $\{\hat{A}_{\varepsilon}: \varepsilon\in [0,1]\}$ at $\varepsilon = 0$.
References:
[1]

E. C. Aifantis, On the problem of diffusion in solids,, Acta Mech., 37 (1980), 265.  doi: 10.1007/BF01202949.  Google Scholar

[2]

C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations,, Nonlinear Anal., 73 (2010), 399.  doi: 10.1016/j.na.2010.03.031.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes,, Nonlinear Anal., 71 (2009), 1812.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[4]

Y. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations,, Appl. Math. Comp., 190 (2007), 1020.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[5]

Y. Li, S. Wang and H. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p$,, Appl. Math. Comp., 207 (2009), 373.  doi: 10.1016/j.amc.2008.10.065.  Google Scholar

[6]

J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[7]

Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractor for semigroups and applications,, Indian University Math. J., 51 (2002), 1541.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[8]

J. C. Peter and M. E. Gurtin, On a theory of heat conduction involving two temperatures,, Z. Angew. Math. Phys., 19 (1968), 614.  doi: 10.1007/BF01594969.  Google Scholar

[9]

C. Sun, S. Wang and C. Zhong, Global attractors for a nonclassical diffusion equation,, Acta Math. Appl. Sin., 23 (2007), 1271.  doi: 10.1007/s10114-005-0909-6.  Google Scholar

[10]

C. Sun and M. Yang, Dynamics of the nonclassical diffusion equations,, Asymp. Anal., 59 (2009), 51.  doi: 10.3233/ASY-2008-0886.  Google Scholar

[11]

C. Truesdell and W. Noll, "The Nonlinear Field Theories of Mechanics,", Encyclomedia of Physics, (1995).   Google Scholar

[12]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains,, Physica D, 179 (1999), 41.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[13]

B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on $\mathbb R^n$,, Front. Math. China, 4 (2009), 563.  doi: 10.1007/s11464-009-0033-5.  Google Scholar

[14]

S. Wang, D. Li and C. Zhong, On the dynamics of a class of nonclassical parabolic equations,, J. Math. Anal. Appl., 317 (2006), 565.  doi: 10.1016/j.jmaa.2005.06.094.  Google Scholar

[15]

Y. Xiao, Attractors for a nonclassical diffusion equation,, Acta Math. Appl. Sin., 18 (2002), 273.  doi: 10.1007/s102550200026.  Google Scholar

[16]

C. K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations,, J. Differential Equations, 15 (2006), 367.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

show all references

References:
[1]

E. C. Aifantis, On the problem of diffusion in solids,, Acta Mech., 37 (1980), 265.  doi: 10.1007/BF01202949.  Google Scholar

[2]

C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations,, Nonlinear Anal., 73 (2010), 399.  doi: 10.1016/j.na.2010.03.031.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes,, Nonlinear Anal., 71 (2009), 1812.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[4]

Y. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations,, Appl. Math. Comp., 190 (2007), 1020.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[5]

Y. Li, S. Wang and H. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p$,, Appl. Math. Comp., 207 (2009), 373.  doi: 10.1016/j.amc.2008.10.065.  Google Scholar

[6]

J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[7]

Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractor for semigroups and applications,, Indian University Math. J., 51 (2002), 1541.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[8]

J. C. Peter and M. E. Gurtin, On a theory of heat conduction involving two temperatures,, Z. Angew. Math. Phys., 19 (1968), 614.  doi: 10.1007/BF01594969.  Google Scholar

[9]

C. Sun, S. Wang and C. Zhong, Global attractors for a nonclassical diffusion equation,, Acta Math. Appl. Sin., 23 (2007), 1271.  doi: 10.1007/s10114-005-0909-6.  Google Scholar

[10]

C. Sun and M. Yang, Dynamics of the nonclassical diffusion equations,, Asymp. Anal., 59 (2009), 51.  doi: 10.3233/ASY-2008-0886.  Google Scholar

[11]

C. Truesdell and W. Noll, "The Nonlinear Field Theories of Mechanics,", Encyclomedia of Physics, (1995).   Google Scholar

[12]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains,, Physica D, 179 (1999), 41.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[13]

B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on $\mathbb R^n$,, Front. Math. China, 4 (2009), 563.  doi: 10.1007/s11464-009-0033-5.  Google Scholar

[14]

S. Wang, D. Li and C. Zhong, On the dynamics of a class of nonclassical parabolic equations,, J. Math. Anal. Appl., 317 (2006), 565.  doi: 10.1016/j.jmaa.2005.06.094.  Google Scholar

[15]

Y. Xiao, Attractors for a nonclassical diffusion equation,, Acta Math. Appl. Sin., 18 (2002), 273.  doi: 10.1007/s102550200026.  Google Scholar

[16]

C. K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations,, J. Differential Equations, 15 (2006), 367.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[1]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[2]

Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020025

[3]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[4]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[5]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[6]

José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483

[7]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[8]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[9]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[10]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

[11]

Shengfan Zhou, Caidi Zhao, Yejuan Wang. Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1259-1277. doi: 10.3934/dcds.2008.21.1259

[12]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[13]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[14]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[15]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[16]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[17]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[18]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[19]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[20]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]