\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of non-autonomous nonclassical diffusion equations on $R^n$

Abstract Related Papers Cited by
  • We consider the Cauchy problem for a non-autonomous nonclassical diffusion equation of the form $u_t-\varepsilon\Delta u_t - \Delta u+f(u)+\lambda u=g(t)$ on $R^n$. Under an arbitrary polynomial growth order of the nonlinearity $f$ and a suitable exponent growth of the external force $g$, using the method of tail-estimates and the asymptotic a priori estimate method, we prove the existence of an $(H^{1}(R^n) L^{p}(R^n), H^{1}(R^n) L^{p}(R^n))$ - pullback attractor $\hat{A}_{\varepsilon}$ for the process associated to the problem. We also prove the upper semicontinuity of $\{\hat{A}_{\varepsilon}: \varepsilon\in [0,1]\}$ at $\varepsilon = 0$.
    Mathematics Subject Classification: 35B41, 35K57, 35D05, 35B30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.doi: 10.1007/BF01202949.

    [2]

    C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal., 73 (2010), 399-412.doi: 10.1016/j.na.2010.03.031.

    [3]

    A. N. Carvalho, J. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.doi: 10.1016/j.na.2009.01.016.

    [4]

    Y. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comp., 190 (2007), 1020-1029.doi: 10.1016/j.amc.2006.11.187.

    [5]

    Y. Li, S. Wang and H. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p$, Appl. Math. Comp., 207 (2009), 373-379.doi: 10.1016/j.amc.2008.10.065.

    [6]

    J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod, Paris, 1969.

    [7]

    Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractor for semigroups and applications, Indian University Math. J., 51 (2002), 1541-1559.doi: 10.1512/iumj.2002.51.2255.

    [8]

    J. C. Peter and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.doi: 10.1007/BF01594969.

    [9]

    C. Sun, S. Wang and C. Zhong, Global attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin., Engl. Ser, 23 (2007), 1271-1280.doi: 10.1007/s10114-005-0909-6.

    [10]

    C. Sun and M. Yang, Dynamics of the nonclassical diffusion equations, Asymp. Anal., 59 (2009), 51-81.doi: 10.3233/ASY-2008-0886.

    [11]

    C. Truesdell and W. Noll, "The Nonlinear Field Theories of Mechanics," Encyclomedia of Physics, Springer, Berlin, 1995.

    [12]

    B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 179 (1999), 41-52.doi: 10.1016/S0167-2789(98)00304-2.

    [13]

    B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on $\mathbb R^n$, Front. Math. China, 4 (2009), 563-583.doi: 10.1007/s11464-009-0033-5.

    [14]

    S. Wang, D. Li and C. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565-582.doi: 10.1016/j.jmaa.2005.06.094.

    [15]

    Y. Xiao, Attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin., Engl. Ser, 18 (2002), 273-276.doi: 10.1007/s102550200026.

    [16]

    C. K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 15 (2006), 367-399.doi: 10.1016/j.jde.2005.06.008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return