Advanced Search
Article Contents
Article Contents

Entropy by unit length for the Ginzburg-Landau equation on the line. A Hilbert space framework

Abstract Related Papers Cited by
  • It is well-known that the Ginzburg-Landau equation on $R$ has a global attractor [15] that attracts in $L^\infty_{l o c}(R)$ all the trajectories. This attractor contains bounded trajectories that are analytical functions in space. A famous theorem due to P. Collet and JP. Eckmann asserts that the $\varepsilon$-entropy per unit length in $L^\infty$ of this global attractor is finite and is smaller than the corresponding complexity for the space of functions which are analytical in a strip. This means that the global attractor is flatter than expected. We explain in this article how to establish the Collet-Eckmann Theorem in a Hilbert space framework.
    Mathematics Subject Classification: Primary: 35Q56, 35B41, 37L30.


    \begin{equation} \\ \end{equation}
  • [1]

    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Apllications Vol. 25, North Holland, 1992.


    A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Procceding of Royal Society of Edinburgh, 116A (1990), 221-243.


    H. Brezis, "Analyse Fonctionnelle," Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.


    P. Collet, Thermodynamic limit of the Ginzburg-Landau equation, Nonlinearity, 7 (1994), 1175-1190.doi: 10.1088/0951-7715/7/4/006.


    P. Collet and J. P. Eckmann, Extensive properties of the complex Ginzburg-Landau equation, Commun. Math. Phys., 200 (1999), 699-722.doi: 10.1007/s002200050546.


    P. Collet and J. P. Eckmann, The definition and measurement of the topological entropy per unit volume in parabolic PDEs, Nonlinearity, 12 (1999), 451-473.doi: 10.1088/0951-7715/12/3/002.


    E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on $\mathbbR^n$, Differential Integral Equations, 9 (1996), 1147-1156.


    J. M. Ghidaglia and B. Heron, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Phys. D, 28 (1987), 282-304.doi: 10.1016/0167-2789(87)90020-0.


    J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation I. Compactness methods, Phys. D, 95 (1996), 191-228.doi: 10.1016/0167-2789(96)00055-3.


    J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation II. Contraction methods, Comm. Math. Phys., 187 (1997), 45-79.doi: 10.1007/s002200050129.


    J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988.


    T. Kato, "Perturbation Theory for Linear Operators," Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.


    A. N. Kolmogorov and V. M. Tikhomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces, Uspehi Mat. Nauk, 14 (1959), 3-86.


    N. Maaroufi, Ph.D thesis, 2010.


    A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains -existence and comparaison, Nonlinearity, 8 (1995), 743-768.doi: 10.1088/0951-7715/8/5/006.


    R. Temam, "Infinite-Dimensional Systems in Mechanics and Physics," Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988.


    P. Takac, P. Bollerman, A. Doelman, A. van Harten and E. S. Titi, Analyticity of essentially bounded solutions to semlinear parabolic systems and validity of the Ginzburg-Landau equation, SIAM J. Math. Anal., 27 (1996), 424-448.doi: 10.1137/S0036141094262518.


    M. I. Vishik and V. V. Chepyzov, Kolmogorov $\varepsilon$-entropy of attractors of reaction-diffusion systems, Mat. Sb., 189 (1998), 81-110.doi: 10.1070/SM1998v189n02ABEH000301.


    S. V. Zelik, An attractor of a nonlinear system of reaction-diffusion equations in $\mathbbR^n$ and estimates for its $\varepsilon$-entropy, Mat. Zametki, 65 (1999), 941-944.doi: 10.1007/BF02675597.


    S. V. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math., 56 (2003), 584-637.doi: 10.1002/cpa.10068.

  • 加载中

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint