\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Entropy by unit length for the Ginzburg-Landau equation on the line. A Hilbert space framework

Abstract / Introduction Related Papers Cited by
  • It is well-known that the Ginzburg-Landau equation on $R$ has a global attractor [15] that attracts in $L^\infty_{l o c}(R)$ all the trajectories. This attractor contains bounded trajectories that are analytical functions in space. A famous theorem due to P. Collet and JP. Eckmann asserts that the $\varepsilon$-entropy per unit length in $L^\infty$ of this global attractor is finite and is smaller than the corresponding complexity for the space of functions which are analytical in a strip. This means that the global attractor is flatter than expected. We explain in this article how to establish the Collet-Eckmann Theorem in a Hilbert space framework.
    Mathematics Subject Classification: Primary: 35Q56, 35B41, 37L30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Apllications Vol. 25, North Holland, 1992.

    [2]

    A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Procceding of Royal Society of Edinburgh, 116A (1990), 221-243.

    [3]

    H. Brezis, "Analyse Fonctionnelle," Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

    [4]

    P. Collet, Thermodynamic limit of the Ginzburg-Landau equation, Nonlinearity, 7 (1994), 1175-1190.doi: 10.1088/0951-7715/7/4/006.

    [5]

    P. Collet and J. P. Eckmann, Extensive properties of the complex Ginzburg-Landau equation, Commun. Math. Phys., 200 (1999), 699-722.doi: 10.1007/s002200050546.

    [6]

    P. Collet and J. P. Eckmann, The definition and measurement of the topological entropy per unit volume in parabolic PDEs, Nonlinearity, 12 (1999), 451-473.doi: 10.1088/0951-7715/12/3/002.

    [7]

    E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on $\mathbbR^n$, Differential Integral Equations, 9 (1996), 1147-1156.

    [8]

    J. M. Ghidaglia and B. Heron, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Phys. D, 28 (1987), 282-304.doi: 10.1016/0167-2789(87)90020-0.

    [9]

    J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation I. Compactness methods, Phys. D, 95 (1996), 191-228.doi: 10.1016/0167-2789(96)00055-3.

    [10]

    J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation II. Contraction methods, Comm. Math. Phys., 187 (1997), 45-79.doi: 10.1007/s002200050129.

    [11]

    J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988.

    [12]

    T. Kato, "Perturbation Theory for Linear Operators," Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

    [13]

    A. N. Kolmogorov and V. M. Tikhomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces, Uspehi Mat. Nauk, 14 (1959), 3-86.

    [14]

    N. Maaroufi, Ph.D thesis, 2010.

    [15]

    A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains -existence and comparaison, Nonlinearity, 8 (1995), 743-768.doi: 10.1088/0951-7715/8/5/006.

    [16]

    R. Temam, "Infinite-Dimensional Systems in Mechanics and Physics," Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988.

    [17]

    P. Takac, P. Bollerman, A. Doelman, A. van Harten and E. S. Titi, Analyticity of essentially bounded solutions to semlinear parabolic systems and validity of the Ginzburg-Landau equation, SIAM J. Math. Anal., 27 (1996), 424-448.doi: 10.1137/S0036141094262518.

    [18]

    M. I. Vishik and V. V. Chepyzov, Kolmogorov $\varepsilon$-entropy of attractors of reaction-diffusion systems, Mat. Sb., 189 (1998), 81-110.doi: 10.1070/SM1998v189n02ABEH000301.

    [19]

    S. V. Zelik, An attractor of a nonlinear system of reaction-diffusion equations in $\mathbbR^n$ and estimates for its $\varepsilon$-entropy, Mat. Zametki, 65 (1999), 941-944.doi: 10.1007/BF02675597.

    [20]

    S. V. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math., 56 (2003), 584-637.doi: 10.1002/cpa.10068.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return