\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition

Abstract Related Papers Cited by
  • We study the large time behavior of positive solutions for the Laplace equation on the half-space with a nonlinear dynamical boundary condition. We show the convergence to the Poisson kernel in a suitable sense provided initial data are sufficiently small.
    Mathematics Subject Classification: Primary: 47J35, 35R11; Secondary: 35B40, 35J65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann and M. Fila, A Fujita-type theorem for the Laplace equation with a dynamical boundary condition, Acta Math. Univ. Comenianae, 66 (1997), 321-328.

    [2]

    K. Deng, M. Fila and H. A. Levine, On critical exponents for a system of heat equations coupled in the boundary conditions, Acta Math. Univ. Comenianae, 63 (1994), 169-192.

    [3]

    J. Escher, Nonlinear elliptic systems with dynamic boundary conditions, Math. Z., 210 (1992), 413-439.doi: 10.1007/BF02571805.

    [4]

    J. Escher, Smooth solutions of nonlinear elliptic systems with dynamic boundary conditions, Lecture Notes Pure Appl. Math., 155 (1994), 173-183.

    [5]

    M. Fila and H. A. Levine, On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition, J. Math. Anal. Appl., 204 (1996), 494-521.doi: 10.1006/jmaa.1996.0451.

    [6]

    M. Fila and P. Quittner, Global solutions of the Laplace equation with a nonlinear dynamical boundary condition, Math. Meth. Appl. Sciences, 20 (1997), 1325-1333.doi: 10.1002/(SICI)1099-1476(199710)20:15<1325::AID-MMA916>3.0.CO;2-G.

    [7]

    M. Fila and P. Quittner, Large time behavior of solutions of a semilinear parabolic equation with a nonlinear dynamical boundary condition, in "Topics in Nonlinear Analysis," Progr. Nonlinear Differential Equations Appl., 35, Birkhäuser Verlag, Basel, 1999, 251-272.

    [8]

    H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.

    [9]

    A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Inc., Englewood Cliffs, N. J. 1964.

    [10]

    V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math., 94 (1996), 125-146.doi: 10.1007/BF02762700.

    [11]

    B. Hu and H.-M. Yin, Critical exponents for a system of heat equations coupled in a non-linear boundary condition, Math. Methods Appl. Sci., 19 (1996), 1099-1120.

    [12]

    B. Hu and H.-M. Yin, On critical exponents for the heat equation with a nonlinear boundary condition, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 707-732.

    [13]

    B. Hu and H.-M. Yin, On critical exponents for the heat equation with a mixed nonlinear Dirichlet-Neumann boundary condition, J. Math. Anal. Appl., 209 (1997), 683-711.

    [14]

    K. Ishige, M. Ishiwata and T. Kawakami, The decay of the solutions for the heat equation with a potential, Indiana Univ. Math. J., 58 (2009), 2673-2708.doi: 10.1512/iumj.2009.58.3771.

    [15]

    K. Ishige and T. Kawakami, Asymptotic behavior of solutions for some semilinear heat equations in $R^N$, Commun. Pure Appl. Anal., 8 (2009), 1351-1371.doi: 10.3934/cpaa.2009.8.1351.

    [16]

    K. Ishige and T. Kawakami, Global solutions of the heat equation with a nonlinear boundary condition, Calc. Var. Partial Differential Equations, 39 (2010), 429-457.doi: 10.1007/s00526-010-0316-4.

    [17]

    K. Ishige and T. KawakamiAsymptotic expansions of the solutions of the Cauchy problem for nonlinear parabolic problems, preprint.

    [18]

    T. Kawakami, Global existence of solutions for the heat equation with a nonlinear boundary condition, J. Math. Anal. Appl., 368 (2010), 320-329.doi: 10.1016/j.jmaa.2010.02.007.

    [19]

    M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type, Hokkaido Math. J., 21 (1992), 221-229.

    [20]

    H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev., 32 (1990), 262-288.doi: 10.1137/1032046.

    [21]

    N. Mizoguchi and E. Yanagida, Critical exponents for the blow-up of solutions with sign changes in a semilinear parabolic equation, Math. Ann., 307 (1997), 663-675.doi: 10.1007/s002080050055.

    [22]

    P. Quittner and P. Souplet, "Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.

    [23]

    S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., 12 (1975), 45-51.

    [24]

    E. Vitillaro, On the Laplace equation with non-linear dynamical boundary conditions, Proc. London Math. Soc., 93 (2006), 418-446.doi: 10.1112/S0024611506015875.

    [25]

    F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(180) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return