May  2012, 11(3): 1303-1337. doi: 10.3934/cpaa.2012.11.1303

The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

1. 

Mathematical Institute, University of Oxford, 24-29 St.Giles, Oxford, United Kingdom

Received  November 2010 Revised  November 2011 Published  December 2011

We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the three-dimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the $C^{1,\alpha}$-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some $0 < \alpha < 1$, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.
Citation: Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303
References:
[1]

J. M. Ball, J. C. Currie and P. J. Olver, Null Lagrangians, weak continuity, and variational problems of arbitrary order,, J. Functional Anal., 41 (1981), 135. doi: 10.1016/0022-1236(81)90085-9.

[2]

J. M. Ball and A. Zarnescu, Orientability and energy minimization for liquid crystals,, Archive for Rational Mechanics and Analysis, 202 (2011), 493.

[3]

F. Bethuel, H. Brezis and F. Helein, "Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications,", 13. Birkhauser, (1994).

[4]

F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional,, Calculus of Variations and Partial Differential Equations, 1 (1993), 123. doi: 10.1007/BF01191614.

[5]

H. Brezis, J. M. Coron and E. H. Lieb, Harmonic maps with defects,, Communications in Mathematical Physics, 107 (1986), 649. doi: 10.1007/BF01205490.

[6]

X. Chen, C. M. Elliott and Q. Tang, Shooting method for vortex solutions of a complex valued Ginzburg-Landau equation,, Proceedings of Royal Society of Edinburgh, 124A (1994), 1075. doi: 10.1017/S0308210500030122.

[7]

Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps,, Math. Z., 201 (1989), 83. doi: 10.1007/BF01161997.

[8]

Y. Chen, Dirichlet problem for heat flows of harmonic maps in higher dimensions,, Math. Z., 208 (1991), 557. doi: 10.1007/BF02571545.

[9]

Y. Chen and F. H. Lin, Evolution of harmonic maps with Dirichlet boundary conditions,, Communications in Analysis and Geometry, 1 (1993), 327.

[10]

L. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).

[11]

P. G. De Gennes, "The Physics of Liquid Crystals,", Oxford, (1974).

[12]

H. Federer, "Geometric Measure Theory,", Springer-Verlag, (1969).

[13]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer, (1977).

[14]

R. Hardt, D. Kinderlehrer and F. H. Lin, Existence and partial regularity of static liquid crystals configurations,, Comm. Math. Phys., 105 (1986), 547. doi: 10.1007/BF01238933.

[15]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, "Linear and Quaislinear Equations of Parabolic Types,", American Mathematical Society, (1968).

[16]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.

[17]

A. Majumdar and A. Zarnescu, The Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond,, Archive of Rational Mechanics and Analysis, 196 (2010), 227. doi: 10.1007/s00205-009-0249-2.

[18]

A. Majumdar, Equilibrium order parameters of liquid crystals in the Landau-de Gennes theory,, European Journal of Applied Mathematics, 21 (2010), 181. doi: 10.1017/S0956792509990210.

[19]

D. Henao and A. Majumdar, Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystal,, submitted to SIAM Journal of Mathematical Analysis., ().

[20]

V. Millot and A. Pisante, Symmetry of local minimizers for the three-dimensional Ginzburg-Landau functional,, Journal of European Mathematical Society, 12 (2010), 1069. doi: 10.4171/JEMS/223.

[21]

S. Mkaddem and E. C. Gartland, Fine structure of defects in radial nematic droplets,, Physical Review E, 62 (2000), 6694. doi: 10.1103/PhysRevE.62.6694.

[22]

N. J. Mottram and C. Newton, Introduction to Q-tensor theory,, University of Strathclyde, (2004).

[23]

K. Nomizu, Characteristic roots and vectors of a differentiable family of symmetric matrices,, Linear and Multilinear Algebra, 1 (1973), 159. doi: 10.1080/03081087308817014.

[24]

E. B. Priestley, P. J Wojtowicz and P. Sheng, "Introduction to Liquid Crystals,", Plenum, (1975).

[25]

R. Rosso and E. Virga, Metastable nematic hedgehogs,, J. Phys. A: Math. Gen., 29 (1996), 4247. doi: 10.1088/0305-4470/29/14/041.

[26]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic mappings,, Journal of Differential Geometry, 17 (1982), 307.

[27]

I. Shafrir, On a class of singular perturbation problems,, in, (2004), 297.

[28]

D. Sun and J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems,, SIAM Journal on Numerical Analysis, 40 (2002), 2352. doi: 10.1137/S0036142901393814.

[29]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman and Hall, (1994).

show all references

References:
[1]

J. M. Ball, J. C. Currie and P. J. Olver, Null Lagrangians, weak continuity, and variational problems of arbitrary order,, J. Functional Anal., 41 (1981), 135. doi: 10.1016/0022-1236(81)90085-9.

[2]

J. M. Ball and A. Zarnescu, Orientability and energy minimization for liquid crystals,, Archive for Rational Mechanics and Analysis, 202 (2011), 493.

[3]

F. Bethuel, H. Brezis and F. Helein, "Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications,", 13. Birkhauser, (1994).

[4]

F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional,, Calculus of Variations and Partial Differential Equations, 1 (1993), 123. doi: 10.1007/BF01191614.

[5]

H. Brezis, J. M. Coron and E. H. Lieb, Harmonic maps with defects,, Communications in Mathematical Physics, 107 (1986), 649. doi: 10.1007/BF01205490.

[6]

X. Chen, C. M. Elliott and Q. Tang, Shooting method for vortex solutions of a complex valued Ginzburg-Landau equation,, Proceedings of Royal Society of Edinburgh, 124A (1994), 1075. doi: 10.1017/S0308210500030122.

[7]

Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps,, Math. Z., 201 (1989), 83. doi: 10.1007/BF01161997.

[8]

Y. Chen, Dirichlet problem for heat flows of harmonic maps in higher dimensions,, Math. Z., 208 (1991), 557. doi: 10.1007/BF02571545.

[9]

Y. Chen and F. H. Lin, Evolution of harmonic maps with Dirichlet boundary conditions,, Communications in Analysis and Geometry, 1 (1993), 327.

[10]

L. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).

[11]

P. G. De Gennes, "The Physics of Liquid Crystals,", Oxford, (1974).

[12]

H. Federer, "Geometric Measure Theory,", Springer-Verlag, (1969).

[13]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer, (1977).

[14]

R. Hardt, D. Kinderlehrer and F. H. Lin, Existence and partial regularity of static liquid crystals configurations,, Comm. Math. Phys., 105 (1986), 547. doi: 10.1007/BF01238933.

[15]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, "Linear and Quaislinear Equations of Parabolic Types,", American Mathematical Society, (1968).

[16]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.

[17]

A. Majumdar and A. Zarnescu, The Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond,, Archive of Rational Mechanics and Analysis, 196 (2010), 227. doi: 10.1007/s00205-009-0249-2.

[18]

A. Majumdar, Equilibrium order parameters of liquid crystals in the Landau-de Gennes theory,, European Journal of Applied Mathematics, 21 (2010), 181. doi: 10.1017/S0956792509990210.

[19]

D. Henao and A. Majumdar, Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystal,, submitted to SIAM Journal of Mathematical Analysis., ().

[20]

V. Millot and A. Pisante, Symmetry of local minimizers for the three-dimensional Ginzburg-Landau functional,, Journal of European Mathematical Society, 12 (2010), 1069. doi: 10.4171/JEMS/223.

[21]

S. Mkaddem and E. C. Gartland, Fine structure of defects in radial nematic droplets,, Physical Review E, 62 (2000), 6694. doi: 10.1103/PhysRevE.62.6694.

[22]

N. J. Mottram and C. Newton, Introduction to Q-tensor theory,, University of Strathclyde, (2004).

[23]

K. Nomizu, Characteristic roots and vectors of a differentiable family of symmetric matrices,, Linear and Multilinear Algebra, 1 (1973), 159. doi: 10.1080/03081087308817014.

[24]

E. B. Priestley, P. J Wojtowicz and P. Sheng, "Introduction to Liquid Crystals,", Plenum, (1975).

[25]

R. Rosso and E. Virga, Metastable nematic hedgehogs,, J. Phys. A: Math. Gen., 29 (1996), 4247. doi: 10.1088/0305-4470/29/14/041.

[26]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic mappings,, Journal of Differential Geometry, 17 (1982), 307.

[27]

I. Shafrir, On a class of singular perturbation problems,, in, (2004), 297.

[28]

D. Sun and J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems,, SIAM Journal on Numerical Analysis, 40 (2002), 2352. doi: 10.1137/S0036142901393814.

[29]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman and Hall, (1994).

[1]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[2]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[3]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[4]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[5]

Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks & Heterogeneous Media, 2012, 7 (1) : 179-196. doi: 10.3934/nhm.2012.7.179

[6]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[7]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[8]

Leonid Berlyand, Volodymyr Rybalko. Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks & Heterogeneous Media, 2013, 8 (1) : 115-130. doi: 10.3934/nhm.2013.8.115

[9]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[10]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[11]

Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149

[12]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[13]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[14]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[15]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[16]

N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476

[17]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

[18]

Alessia Berti, Valeria Berti, Ivana Bochicchio. Global and exponential attractors for a Ginzburg-Landau model of superfluidity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 247-271. doi: 10.3934/dcdss.2011.4.247

[19]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[20]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]