May  2012, 11(3): 1303-1337. doi: 10.3934/cpaa.2012.11.1303

The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

1. 

Mathematical Institute, University of Oxford, 24-29 St.Giles, Oxford, United Kingdom

Received  November 2010 Revised  November 2011 Published  December 2011

We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the three-dimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the $C^{1,\alpha}$-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some $0 < \alpha < 1$, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.
Citation: Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303
References:
[1]

J. M. Ball, J. C. Currie and P. J. Olver, Null Lagrangians, weak continuity, and variational problems of arbitrary order,, J. Functional Anal., 41 (1981), 135.  doi: 10.1016/0022-1236(81)90085-9.  Google Scholar

[2]

J. M. Ball and A. Zarnescu, Orientability and energy minimization for liquid crystals,, Archive for Rational Mechanics and Analysis, 202 (2011), 493.   Google Scholar

[3]

F. Bethuel, H. Brezis and F. Helein, "Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications,", 13. Birkhauser, (1994).   Google Scholar

[4]

F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional,, Calculus of Variations and Partial Differential Equations, 1 (1993), 123.  doi: 10.1007/BF01191614.  Google Scholar

[5]

H. Brezis, J. M. Coron and E. H. Lieb, Harmonic maps with defects,, Communications in Mathematical Physics, 107 (1986), 649.  doi: 10.1007/BF01205490.  Google Scholar

[6]

X. Chen, C. M. Elliott and Q. Tang, Shooting method for vortex solutions of a complex valued Ginzburg-Landau equation,, Proceedings of Royal Society of Edinburgh, 124A (1994), 1075.  doi: 10.1017/S0308210500030122.  Google Scholar

[7]

Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps,, Math. Z., 201 (1989), 83.  doi: 10.1007/BF01161997.  Google Scholar

[8]

Y. Chen, Dirichlet problem for heat flows of harmonic maps in higher dimensions,, Math. Z., 208 (1991), 557.  doi: 10.1007/BF02571545.  Google Scholar

[9]

Y. Chen and F. H. Lin, Evolution of harmonic maps with Dirichlet boundary conditions,, Communications in Analysis and Geometry, 1 (1993), 327.   Google Scholar

[10]

L. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).   Google Scholar

[11]

P. G. De Gennes, "The Physics of Liquid Crystals,", Oxford, (1974).   Google Scholar

[12]

H. Federer, "Geometric Measure Theory,", Springer-Verlag, (1969).   Google Scholar

[13]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer, (1977).   Google Scholar

[14]

R. Hardt, D. Kinderlehrer and F. H. Lin, Existence and partial regularity of static liquid crystals configurations,, Comm. Math. Phys., 105 (1986), 547.  doi: 10.1007/BF01238933.  Google Scholar

[15]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, "Linear and Quaislinear Equations of Parabolic Types,", American Mathematical Society, (1968).   Google Scholar

[16]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.   Google Scholar

[17]

A. Majumdar and A. Zarnescu, The Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond,, Archive of Rational Mechanics and Analysis, 196 (2010), 227.  doi: 10.1007/s00205-009-0249-2.  Google Scholar

[18]

A. Majumdar, Equilibrium order parameters of liquid crystals in the Landau-de Gennes theory,, European Journal of Applied Mathematics, 21 (2010), 181.  doi: 10.1017/S0956792509990210.  Google Scholar

[19]

D. Henao and A. Majumdar, Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystal,, submitted to SIAM Journal of Mathematical Analysis., ().   Google Scholar

[20]

V. Millot and A. Pisante, Symmetry of local minimizers for the three-dimensional Ginzburg-Landau functional,, Journal of European Mathematical Society, 12 (2010), 1069.  doi: 10.4171/JEMS/223.  Google Scholar

[21]

S. Mkaddem and E. C. Gartland, Fine structure of defects in radial nematic droplets,, Physical Review E, 62 (2000), 6694.  doi: 10.1103/PhysRevE.62.6694.  Google Scholar

[22]

N. J. Mottram and C. Newton, Introduction to Q-tensor theory,, University of Strathclyde, (2004).   Google Scholar

[23]

K. Nomizu, Characteristic roots and vectors of a differentiable family of symmetric matrices,, Linear and Multilinear Algebra, 1 (1973), 159.  doi: 10.1080/03081087308817014.  Google Scholar

[24]

E. B. Priestley, P. J Wojtowicz and P. Sheng, "Introduction to Liquid Crystals,", Plenum, (1975).   Google Scholar

[25]

R. Rosso and E. Virga, Metastable nematic hedgehogs,, J. Phys. A: Math. Gen., 29 (1996), 4247.  doi: 10.1088/0305-4470/29/14/041.  Google Scholar

[26]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic mappings,, Journal of Differential Geometry, 17 (1982), 307.   Google Scholar

[27]

I. Shafrir, On a class of singular perturbation problems,, in, (2004), 297.   Google Scholar

[28]

D. Sun and J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems,, SIAM Journal on Numerical Analysis, 40 (2002), 2352.  doi: 10.1137/S0036142901393814.  Google Scholar

[29]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman and Hall, (1994).   Google Scholar

show all references

References:
[1]

J. M. Ball, J. C. Currie and P. J. Olver, Null Lagrangians, weak continuity, and variational problems of arbitrary order,, J. Functional Anal., 41 (1981), 135.  doi: 10.1016/0022-1236(81)90085-9.  Google Scholar

[2]

J. M. Ball and A. Zarnescu, Orientability and energy minimization for liquid crystals,, Archive for Rational Mechanics and Analysis, 202 (2011), 493.   Google Scholar

[3]

F. Bethuel, H. Brezis and F. Helein, "Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications,", 13. Birkhauser, (1994).   Google Scholar

[4]

F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional,, Calculus of Variations and Partial Differential Equations, 1 (1993), 123.  doi: 10.1007/BF01191614.  Google Scholar

[5]

H. Brezis, J. M. Coron and E. H. Lieb, Harmonic maps with defects,, Communications in Mathematical Physics, 107 (1986), 649.  doi: 10.1007/BF01205490.  Google Scholar

[6]

X. Chen, C. M. Elliott and Q. Tang, Shooting method for vortex solutions of a complex valued Ginzburg-Landau equation,, Proceedings of Royal Society of Edinburgh, 124A (1994), 1075.  doi: 10.1017/S0308210500030122.  Google Scholar

[7]

Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps,, Math. Z., 201 (1989), 83.  doi: 10.1007/BF01161997.  Google Scholar

[8]

Y. Chen, Dirichlet problem for heat flows of harmonic maps in higher dimensions,, Math. Z., 208 (1991), 557.  doi: 10.1007/BF02571545.  Google Scholar

[9]

Y. Chen and F. H. Lin, Evolution of harmonic maps with Dirichlet boundary conditions,, Communications in Analysis and Geometry, 1 (1993), 327.   Google Scholar

[10]

L. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).   Google Scholar

[11]

P. G. De Gennes, "The Physics of Liquid Crystals,", Oxford, (1974).   Google Scholar

[12]

H. Federer, "Geometric Measure Theory,", Springer-Verlag, (1969).   Google Scholar

[13]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer, (1977).   Google Scholar

[14]

R. Hardt, D. Kinderlehrer and F. H. Lin, Existence and partial regularity of static liquid crystals configurations,, Comm. Math. Phys., 105 (1986), 547.  doi: 10.1007/BF01238933.  Google Scholar

[15]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, "Linear and Quaislinear Equations of Parabolic Types,", American Mathematical Society, (1968).   Google Scholar

[16]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.   Google Scholar

[17]

A. Majumdar and A. Zarnescu, The Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond,, Archive of Rational Mechanics and Analysis, 196 (2010), 227.  doi: 10.1007/s00205-009-0249-2.  Google Scholar

[18]

A. Majumdar, Equilibrium order parameters of liquid crystals in the Landau-de Gennes theory,, European Journal of Applied Mathematics, 21 (2010), 181.  doi: 10.1017/S0956792509990210.  Google Scholar

[19]

D. Henao and A. Majumdar, Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystal,, submitted to SIAM Journal of Mathematical Analysis., ().   Google Scholar

[20]

V. Millot and A. Pisante, Symmetry of local minimizers for the three-dimensional Ginzburg-Landau functional,, Journal of European Mathematical Society, 12 (2010), 1069.  doi: 10.4171/JEMS/223.  Google Scholar

[21]

S. Mkaddem and E. C. Gartland, Fine structure of defects in radial nematic droplets,, Physical Review E, 62 (2000), 6694.  doi: 10.1103/PhysRevE.62.6694.  Google Scholar

[22]

N. J. Mottram and C. Newton, Introduction to Q-tensor theory,, University of Strathclyde, (2004).   Google Scholar

[23]

K. Nomizu, Characteristic roots and vectors of a differentiable family of symmetric matrices,, Linear and Multilinear Algebra, 1 (1973), 159.  doi: 10.1080/03081087308817014.  Google Scholar

[24]

E. B. Priestley, P. J Wojtowicz and P. Sheng, "Introduction to Liquid Crystals,", Plenum, (1975).   Google Scholar

[25]

R. Rosso and E. Virga, Metastable nematic hedgehogs,, J. Phys. A: Math. Gen., 29 (1996), 4247.  doi: 10.1088/0305-4470/29/14/041.  Google Scholar

[26]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic mappings,, Journal of Differential Geometry, 17 (1982), 307.   Google Scholar

[27]

I. Shafrir, On a class of singular perturbation problems,, in, (2004), 297.   Google Scholar

[28]

D. Sun and J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems,, SIAM Journal on Numerical Analysis, 40 (2002), 2352.  doi: 10.1137/S0036142901393814.  Google Scholar

[29]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman and Hall, (1994).   Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[5]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[6]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[7]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[8]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[9]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[10]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[11]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[12]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[13]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[14]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[15]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[16]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (159)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]