May  2012, 11(3): 1363-1386. doi: 10.3934/cpaa.2012.11.1363

Improving sharp Sobolev type inequalities by optimal remainder gradient norms

1. 

Dipartimento di Matematica "U.Dini", Università di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy

2. 

Dipartimento di Matematica, Seconda Università di Napoli, Viale Lincoln 5, 81100 Caserta, Italy

Received  December 2010 Revised  March 2011 Published  December 2011

We are concerned with Sobolev type inequalities in $W^{1,p}_0(\Omega )$, $\Omega \subset R^n$, with optimal target norms and sharp constants. Admissible remainder terms depending on the gradient are characterized. As a consequence, the strongest possible remainder norm of the gradient is exhibited. Both the case when $p< n$ and the borderline case when $p = n$ are considered. Related Hardy inequalities with remainders are also derived.
Citation: Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363
References:
[1]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications,, Proc. Amer. Math. Soc., 130 (2002), 489. doi: 10.1090/S0002-9939-01-06132-9.

[2]

Adimurthi and M. J. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}$ and its applications to Schrödinger operators,, NoDEA Nonlinear Differential Equation Appl., 12 (2005), 243. doi: 10.1007/S00030-005-0009-4.

[3]

A. Alvino, Sulla disuguaglianza di Sobolev in spazi di Lorentz,, Boll. Un. Mat. Ital., 5 (1977), 148.

[4]

A. Alvino, P.-L.Lions and G. Trombetti, On optimization problems with prescribed rearrangements,, Nonlinear Anal., 13 (1989), 185. doi: 10.1016/0362-546X(89)90043-6.

[5]

A. Alvino, R. Volpicelli and B. Volzone, On Hardy inequalities with a remainder term,, Ric. Mat., 59 (2010), 265. doi: 10.1007/s11587-010-0086-5.

[6]

T. Aubin, Problèmes isopérimetriques et espaces de Sobolev,, J. Diff. Geom., 11 (1976), 573.

[7]

G. Barbatis, S. Filippas and A. Tertikas, Series expansion for $L^p$ Hardy inequalities,, Indiana Univ. Math. J., 52 (2003), 171. doi: 0.1512/iumj.2003.52.2207.

[8]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants,, Trans. Amer. Math. Soc., 356 (2004), 2169. doi: 10.1090/S0002-9947-03-03389-0.

[9]

R. Benguria, R. Frank and M. Loss, The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space,, Math. Res. Lett., 15 (2008), 613.

[10]

C. Bennett and R. Sharpley, "Interpolation of Operators,", Academic Press, (1988).

[11]

H.Brezis and E.Lieb, Sobolev inequalities with remainder terms,, J. Funct. Anal., 62 (1985), 73. doi: 10.1016/0022-1236(85)90020-5.

[12]

H. Brezis and M. Marcus, Hardy's inequalities revisited,, Ann. Sc. Norm. Super. Pisa, 25 (1997), 217.

[13]

H. Brezis, M. Marcus and I. Shafrir, Extremal functions for Hardy's inequality with weight,, J. Funct. Anal., 171 (2000), 177. doi: 10.1006/jfan.1999.3504.

[14]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437. doi: 10.1002/cpa.3160360405.

[15]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Part. Diff. Eq., 5 (1980), 773. doi: 10.1080/03605308008820154.

[16]

J. E. Brothers and W. P. Ziemer, Minimal rearrangements of Sobolev functions,, J. Reine Angew. Math., 384 (1988), 419. doi: 10.1515/crll.1988.384.153.

[17]

A. Cianchi and A. Ferone, Best remainder norms in Sobolev-Hardy inequalities,, Indiana Univ. Math. J., 58 (2009), 1051. doi: 10.1512/iumj.2009.58.3561.

[18]

G. Crasta, I. Fragalà and F. Gazzola, Some estimates for the torsional rigidity of composite rods,, Math. Nachr., 280 (2007), 242. doi: 0.1002/mana.200410478.

[19]

M. Cwikel and E. Pustylnik, Sobolev type embeddings in the limiting case,, J. Fourier Anal. Appl., 4 (1998), 433. doi: 10.1007/BF02498218.

[20]

A. Detalla, T. Horiuchi and H. Ando, Missing terms in Hardy-Sobolev inequalities and its applications,, Far East J. Math. Sci., 14 (2004), 333.

[21]

J. Dolbeault, M. J. Esteban, M. Loss and L. Vega, An analytical proof of Hardy-like inequalities related to the Dirac operator,, J. Funct. Anal., 216 (2004), 1. doi: 10.1016/j.jfa.2003.09.010.

[22]

D. E. Edmunds, R. A. Kerman and L. Pick, Optimal Sobolev imbeddings involving rearrangement invariant quasi-norms,, J. Funct. Anal., 170 (2000), 307. doi: 10.1006/jfan.1999.3508.

[23]

S. Filippas, V. G. Maz'ya and A. Tertikas, On a question of Brezis and Marcus,, Calc. Var. Partial Differential Equations, 25 (2006), 491. doi: 10.1007/s00526-005-0353-6.

[24]

S. Filippas, V. G. Maz'ya and A. Tertikas, Critical Hardy-Sobolev inequalities,, J. Math. Pures Appl., 87 (2007), 37. doi: 10.1016/j.matpur.2006.10.007.

[25]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Trans. Amer. Math. Soc., 356 (2004), 2149. doi: 10.1090/S0002-9947-03-03395-6.

[26]

N. Ghoussoub and A. Moradifam, On the best possible remaining term in the Hardy inequality,, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746. doi: 10.1073/pnas.0803703105.

[27]

E. Giarrusso and D. Nunziante, Symmetrization in a class of first-order Hamilton-Jacobi equations,, Nonlinear Anal., 8 (1984), 289. doi: 10.1016/0362-546X(84)90031-2.

[28]

A. Gogatishvili, B. Opic and L. Pick, Weighted inequalities for Hardy-type operators involving suprema,, Collect. Math., 57 (2006), 227.

[29]

A. Gogatishvili and L. Pick, Discretization and antidiscretization of rearrangement-invariant norms,, Publ. Mat., 47 (2003), 311.

[30]

K. Hansson, Imbedding theorems of Sobolev type in potential theory,, Math. Scand., 45 (1979), 77.

[31]

M. Hoffman-Ostenhof, T. Hoffman-Ostenhof and A. Laptev, A geometrical version of Hardy's inequality,, J. Funct. Anal., 189 (2002), 539.

[32]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Math. 1150, (1150).

[33]

V. M. Maz'ya and T. O. Shaposhnikova, "Sobolev Spaces: with Applications to Elliptic Partial Differential Equations,", Springer-Verlag, (2011). doi: 10.1007/978-3-642-15564-2.

[34]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.

[35]

R. O'Neil, Convolution operators in $L(p,q)$ spaces,, Duke Math. J., 30 (1963), 129. doi: 10.1215/S0012-7094-63-03015-1.

[36]

J. Peetre, Espaces d' interpolation et théorème de Soboleff,, Ann. Inst. Fourier, 16 (1966), 279. doi: 10.5802/aif.232.

[37]

S. I. Pohozaev, On the imbedding Sobolev theorem for $p=n$,, Doklady Conference, (1965), 158.

[38]

G. Sinnamon and V. D. Stepanov, The weighted Hardy inequality: new proofs and the case $p=1$,, J. London Math. Soc., 54 (1996), 89.

[39]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353. doi: 10.1007/BF02418013.

[40]

J. Tidblom, A Hardy inequality in the half-space,, J. Funct. Anal., 221 (2005), 482. doi: 10.1016/j.jfa.2004.09.014.

[41]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.

[42]

V. I. Yudovic, Some estimates connected with integral operators and with solutions of elliptic equations,, Dokl. Akad. Nauk SSSR, 138 (1961), 805.

[43]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103. doi: 10.1006/jfan.1999.3556.

show all references

References:
[1]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications,, Proc. Amer. Math. Soc., 130 (2002), 489. doi: 10.1090/S0002-9939-01-06132-9.

[2]

Adimurthi and M. J. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}$ and its applications to Schrödinger operators,, NoDEA Nonlinear Differential Equation Appl., 12 (2005), 243. doi: 10.1007/S00030-005-0009-4.

[3]

A. Alvino, Sulla disuguaglianza di Sobolev in spazi di Lorentz,, Boll. Un. Mat. Ital., 5 (1977), 148.

[4]

A. Alvino, P.-L.Lions and G. Trombetti, On optimization problems with prescribed rearrangements,, Nonlinear Anal., 13 (1989), 185. doi: 10.1016/0362-546X(89)90043-6.

[5]

A. Alvino, R. Volpicelli and B. Volzone, On Hardy inequalities with a remainder term,, Ric. Mat., 59 (2010), 265. doi: 10.1007/s11587-010-0086-5.

[6]

T. Aubin, Problèmes isopérimetriques et espaces de Sobolev,, J. Diff. Geom., 11 (1976), 573.

[7]

G. Barbatis, S. Filippas and A. Tertikas, Series expansion for $L^p$ Hardy inequalities,, Indiana Univ. Math. J., 52 (2003), 171. doi: 0.1512/iumj.2003.52.2207.

[8]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants,, Trans. Amer. Math. Soc., 356 (2004), 2169. doi: 10.1090/S0002-9947-03-03389-0.

[9]

R. Benguria, R. Frank and M. Loss, The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space,, Math. Res. Lett., 15 (2008), 613.

[10]

C. Bennett and R. Sharpley, "Interpolation of Operators,", Academic Press, (1988).

[11]

H.Brezis and E.Lieb, Sobolev inequalities with remainder terms,, J. Funct. Anal., 62 (1985), 73. doi: 10.1016/0022-1236(85)90020-5.

[12]

H. Brezis and M. Marcus, Hardy's inequalities revisited,, Ann. Sc. Norm. Super. Pisa, 25 (1997), 217.

[13]

H. Brezis, M. Marcus and I. Shafrir, Extremal functions for Hardy's inequality with weight,, J. Funct. Anal., 171 (2000), 177. doi: 10.1006/jfan.1999.3504.

[14]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437. doi: 10.1002/cpa.3160360405.

[15]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Part. Diff. Eq., 5 (1980), 773. doi: 10.1080/03605308008820154.

[16]

J. E. Brothers and W. P. Ziemer, Minimal rearrangements of Sobolev functions,, J. Reine Angew. Math., 384 (1988), 419. doi: 10.1515/crll.1988.384.153.

[17]

A. Cianchi and A. Ferone, Best remainder norms in Sobolev-Hardy inequalities,, Indiana Univ. Math. J., 58 (2009), 1051. doi: 10.1512/iumj.2009.58.3561.

[18]

G. Crasta, I. Fragalà and F. Gazzola, Some estimates for the torsional rigidity of composite rods,, Math. Nachr., 280 (2007), 242. doi: 0.1002/mana.200410478.

[19]

M. Cwikel and E. Pustylnik, Sobolev type embeddings in the limiting case,, J. Fourier Anal. Appl., 4 (1998), 433. doi: 10.1007/BF02498218.

[20]

A. Detalla, T. Horiuchi and H. Ando, Missing terms in Hardy-Sobolev inequalities and its applications,, Far East J. Math. Sci., 14 (2004), 333.

[21]

J. Dolbeault, M. J. Esteban, M. Loss and L. Vega, An analytical proof of Hardy-like inequalities related to the Dirac operator,, J. Funct. Anal., 216 (2004), 1. doi: 10.1016/j.jfa.2003.09.010.

[22]

D. E. Edmunds, R. A. Kerman and L. Pick, Optimal Sobolev imbeddings involving rearrangement invariant quasi-norms,, J. Funct. Anal., 170 (2000), 307. doi: 10.1006/jfan.1999.3508.

[23]

S. Filippas, V. G. Maz'ya and A. Tertikas, On a question of Brezis and Marcus,, Calc. Var. Partial Differential Equations, 25 (2006), 491. doi: 10.1007/s00526-005-0353-6.

[24]

S. Filippas, V. G. Maz'ya and A. Tertikas, Critical Hardy-Sobolev inequalities,, J. Math. Pures Appl., 87 (2007), 37. doi: 10.1016/j.matpur.2006.10.007.

[25]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Trans. Amer. Math. Soc., 356 (2004), 2149. doi: 10.1090/S0002-9947-03-03395-6.

[26]

N. Ghoussoub and A. Moradifam, On the best possible remaining term in the Hardy inequality,, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746. doi: 10.1073/pnas.0803703105.

[27]

E. Giarrusso and D. Nunziante, Symmetrization in a class of first-order Hamilton-Jacobi equations,, Nonlinear Anal., 8 (1984), 289. doi: 10.1016/0362-546X(84)90031-2.

[28]

A. Gogatishvili, B. Opic and L. Pick, Weighted inequalities for Hardy-type operators involving suprema,, Collect. Math., 57 (2006), 227.

[29]

A. Gogatishvili and L. Pick, Discretization and antidiscretization of rearrangement-invariant norms,, Publ. Mat., 47 (2003), 311.

[30]

K. Hansson, Imbedding theorems of Sobolev type in potential theory,, Math. Scand., 45 (1979), 77.

[31]

M. Hoffman-Ostenhof, T. Hoffman-Ostenhof and A. Laptev, A geometrical version of Hardy's inequality,, J. Funct. Anal., 189 (2002), 539.

[32]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Math. 1150, (1150).

[33]

V. M. Maz'ya and T. O. Shaposhnikova, "Sobolev Spaces: with Applications to Elliptic Partial Differential Equations,", Springer-Verlag, (2011). doi: 10.1007/978-3-642-15564-2.

[34]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.

[35]

R. O'Neil, Convolution operators in $L(p,q)$ spaces,, Duke Math. J., 30 (1963), 129. doi: 10.1215/S0012-7094-63-03015-1.

[36]

J. Peetre, Espaces d' interpolation et théorème de Soboleff,, Ann. Inst. Fourier, 16 (1966), 279. doi: 10.5802/aif.232.

[37]

S. I. Pohozaev, On the imbedding Sobolev theorem for $p=n$,, Doklady Conference, (1965), 158.

[38]

G. Sinnamon and V. D. Stepanov, The weighted Hardy inequality: new proofs and the case $p=1$,, J. London Math. Soc., 54 (1996), 89.

[39]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353. doi: 10.1007/BF02418013.

[40]

J. Tidblom, A Hardy inequality in the half-space,, J. Funct. Anal., 221 (2005), 482. doi: 10.1016/j.jfa.2004.09.014.

[41]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.

[42]

V. I. Yudovic, Some estimates connected with integral operators and with solutions of elliptic equations,, Dokl. Akad. Nauk SSSR, 138 (1961), 805.

[43]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103. doi: 10.1006/jfan.1999.3556.

[1]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[2]

Neal Bez, Sanghyuk Lee, Shohei Nakamura, Yoshihiro Sawano. Sharpness of the Brascamp–Lieb inequality in Lorentz spaces. Electronic Research Announcements, 2017, 24: 53-63. doi: 10.3934/era.2017.24.006

[3]

Angelo Alvino, Roberta Volpicelli, Bruno Volzone. A remark on Hardy type inequalities with remainder terms. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 801-807. doi: 10.3934/dcdss.2011.4.801

[4]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[5]

Paolo Maremonti. A remark on the Stokes problem in Lorentz spaces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1323-1342. doi: 10.3934/dcdss.2013.6.1323

[6]

Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016

[7]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[8]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[9]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[10]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[11]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[12]

Elvise Berchio, Debdip Ganguly. Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1871-1892. doi: 10.3934/cpaa.2016020

[13]

Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure & Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571

[14]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[15]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[16]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[17]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[18]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[19]

Daniel Guan. Classification of compact complex homogeneous spaces with invariant volumes. Electronic Research Announcements, 1997, 3: 90-92.

[20]

Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54.

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]