May  2012, 11(3): 1363-1386. doi: 10.3934/cpaa.2012.11.1363

Improving sharp Sobolev type inequalities by optimal remainder gradient norms

1. 

Dipartimento di Matematica "U.Dini", Università di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy

2. 

Dipartimento di Matematica, Seconda Università di Napoli, Viale Lincoln 5, 81100 Caserta, Italy

Received  December 2010 Revised  March 2011 Published  December 2011

We are concerned with Sobolev type inequalities in $W^{1,p}_0(\Omega )$, $\Omega \subset R^n$, with optimal target norms and sharp constants. Admissible remainder terms depending on the gradient are characterized. As a consequence, the strongest possible remainder norm of the gradient is exhibited. Both the case when $p< n$ and the borderline case when $p = n$ are considered. Related Hardy inequalities with remainders are also derived.
Citation: Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363
References:
[1]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications,, Proc. Amer. Math. Soc., 130 (2002), 489.  doi: 10.1090/S0002-9939-01-06132-9.  Google Scholar

[2]

Adimurthi and M. J. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}$ and its applications to Schrödinger operators,, NoDEA Nonlinear Differential Equation Appl., 12 (2005), 243.  doi: 10.1007/S00030-005-0009-4.  Google Scholar

[3]

A. Alvino, Sulla disuguaglianza di Sobolev in spazi di Lorentz,, Boll. Un. Mat. Ital., 5 (1977), 148.   Google Scholar

[4]

A. Alvino, P.-L.Lions and G. Trombetti, On optimization problems with prescribed rearrangements,, Nonlinear Anal., 13 (1989), 185.  doi: 10.1016/0362-546X(89)90043-6.  Google Scholar

[5]

A. Alvino, R. Volpicelli and B. Volzone, On Hardy inequalities with a remainder term,, Ric. Mat., 59 (2010), 265.  doi: 10.1007/s11587-010-0086-5.  Google Scholar

[6]

T. Aubin, Problèmes isopérimetriques et espaces de Sobolev,, J. Diff. Geom., 11 (1976), 573.   Google Scholar

[7]

G. Barbatis, S. Filippas and A. Tertikas, Series expansion for $L^p$ Hardy inequalities,, Indiana Univ. Math. J., 52 (2003), 171.  doi: 0.1512/iumj.2003.52.2207.  Google Scholar

[8]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants,, Trans. Amer. Math. Soc., 356 (2004), 2169.  doi: 10.1090/S0002-9947-03-03389-0.  Google Scholar

[9]

R. Benguria, R. Frank and M. Loss, The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space,, Math. Res. Lett., 15 (2008), 613.   Google Scholar

[10]

C. Bennett and R. Sharpley, "Interpolation of Operators,", Academic Press, (1988).   Google Scholar

[11]

H.Brezis and E.Lieb, Sobolev inequalities with remainder terms,, J. Funct. Anal., 62 (1985), 73.  doi: 10.1016/0022-1236(85)90020-5.  Google Scholar

[12]

H. Brezis and M. Marcus, Hardy's inequalities revisited,, Ann. Sc. Norm. Super. Pisa, 25 (1997), 217.   Google Scholar

[13]

H. Brezis, M. Marcus and I. Shafrir, Extremal functions for Hardy's inequality with weight,, J. Funct. Anal., 171 (2000), 177.  doi: 10.1006/jfan.1999.3504.  Google Scholar

[14]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[15]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Part. Diff. Eq., 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[16]

J. E. Brothers and W. P. Ziemer, Minimal rearrangements of Sobolev functions,, J. Reine Angew. Math., 384 (1988), 419.  doi: 10.1515/crll.1988.384.153.  Google Scholar

[17]

A. Cianchi and A. Ferone, Best remainder norms in Sobolev-Hardy inequalities,, Indiana Univ. Math. J., 58 (2009), 1051.  doi: 10.1512/iumj.2009.58.3561.  Google Scholar

[18]

G. Crasta, I. Fragalà and F. Gazzola, Some estimates for the torsional rigidity of composite rods,, Math. Nachr., 280 (2007), 242.  doi: 0.1002/mana.200410478.  Google Scholar

[19]

M. Cwikel and E. Pustylnik, Sobolev type embeddings in the limiting case,, J. Fourier Anal. Appl., 4 (1998), 433.  doi: 10.1007/BF02498218.  Google Scholar

[20]

A. Detalla, T. Horiuchi and H. Ando, Missing terms in Hardy-Sobolev inequalities and its applications,, Far East J. Math. Sci., 14 (2004), 333.   Google Scholar

[21]

J. Dolbeault, M. J. Esteban, M. Loss and L. Vega, An analytical proof of Hardy-like inequalities related to the Dirac operator,, J. Funct. Anal., 216 (2004), 1.  doi: 10.1016/j.jfa.2003.09.010.  Google Scholar

[22]

D. E. Edmunds, R. A. Kerman and L. Pick, Optimal Sobolev imbeddings involving rearrangement invariant quasi-norms,, J. Funct. Anal., 170 (2000), 307.  doi: 10.1006/jfan.1999.3508.  Google Scholar

[23]

S. Filippas, V. G. Maz'ya and A. Tertikas, On a question of Brezis and Marcus,, Calc. Var. Partial Differential Equations, 25 (2006), 491.  doi: 10.1007/s00526-005-0353-6.  Google Scholar

[24]

S. Filippas, V. G. Maz'ya and A. Tertikas, Critical Hardy-Sobolev inequalities,, J. Math. Pures Appl., 87 (2007), 37.  doi: 10.1016/j.matpur.2006.10.007.  Google Scholar

[25]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Trans. Amer. Math. Soc., 356 (2004), 2149.  doi: 10.1090/S0002-9947-03-03395-6.  Google Scholar

[26]

N. Ghoussoub and A. Moradifam, On the best possible remaining term in the Hardy inequality,, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746.  doi: 10.1073/pnas.0803703105.  Google Scholar

[27]

E. Giarrusso and D. Nunziante, Symmetrization in a class of first-order Hamilton-Jacobi equations,, Nonlinear Anal., 8 (1984), 289.  doi: 10.1016/0362-546X(84)90031-2.  Google Scholar

[28]

A. Gogatishvili, B. Opic and L. Pick, Weighted inequalities for Hardy-type operators involving suprema,, Collect. Math., 57 (2006), 227.   Google Scholar

[29]

A. Gogatishvili and L. Pick, Discretization and antidiscretization of rearrangement-invariant norms,, Publ. Mat., 47 (2003), 311.   Google Scholar

[30]

K. Hansson, Imbedding theorems of Sobolev type in potential theory,, Math. Scand., 45 (1979), 77.   Google Scholar

[31]

M. Hoffman-Ostenhof, T. Hoffman-Ostenhof and A. Laptev, A geometrical version of Hardy's inequality,, J. Funct. Anal., 189 (2002), 539.   Google Scholar

[32]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Math. 1150, (1150).   Google Scholar

[33]

V. M. Maz'ya and T. O. Shaposhnikova, "Sobolev Spaces: with Applications to Elliptic Partial Differential Equations,", Springer-Verlag, (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[34]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.   Google Scholar

[35]

R. O'Neil, Convolution operators in $L(p,q)$ spaces,, Duke Math. J., 30 (1963), 129.  doi: 10.1215/S0012-7094-63-03015-1.  Google Scholar

[36]

J. Peetre, Espaces d' interpolation et théorème de Soboleff,, Ann. Inst. Fourier, 16 (1966), 279.  doi: 10.5802/aif.232.  Google Scholar

[37]

S. I. Pohozaev, On the imbedding Sobolev theorem for $p=n$,, Doklady Conference, (1965), 158.   Google Scholar

[38]

G. Sinnamon and V. D. Stepanov, The weighted Hardy inequality: new proofs and the case $p=1$,, J. London Math. Soc., 54 (1996), 89.   Google Scholar

[39]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353.  doi: 10.1007/BF02418013.  Google Scholar

[40]

J. Tidblom, A Hardy inequality in the half-space,, J. Funct. Anal., 221 (2005), 482.  doi: 10.1016/j.jfa.2004.09.014.  Google Scholar

[41]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.   Google Scholar

[42]

V. I. Yudovic, Some estimates connected with integral operators and with solutions of elliptic equations,, Dokl. Akad. Nauk SSSR, 138 (1961), 805.   Google Scholar

[43]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103.  doi: 10.1006/jfan.1999.3556.  Google Scholar

show all references

References:
[1]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications,, Proc. Amer. Math. Soc., 130 (2002), 489.  doi: 10.1090/S0002-9939-01-06132-9.  Google Scholar

[2]

Adimurthi and M. J. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}$ and its applications to Schrödinger operators,, NoDEA Nonlinear Differential Equation Appl., 12 (2005), 243.  doi: 10.1007/S00030-005-0009-4.  Google Scholar

[3]

A. Alvino, Sulla disuguaglianza di Sobolev in spazi di Lorentz,, Boll. Un. Mat. Ital., 5 (1977), 148.   Google Scholar

[4]

A. Alvino, P.-L.Lions and G. Trombetti, On optimization problems with prescribed rearrangements,, Nonlinear Anal., 13 (1989), 185.  doi: 10.1016/0362-546X(89)90043-6.  Google Scholar

[5]

A. Alvino, R. Volpicelli and B. Volzone, On Hardy inequalities with a remainder term,, Ric. Mat., 59 (2010), 265.  doi: 10.1007/s11587-010-0086-5.  Google Scholar

[6]

T. Aubin, Problèmes isopérimetriques et espaces de Sobolev,, J. Diff. Geom., 11 (1976), 573.   Google Scholar

[7]

G. Barbatis, S. Filippas and A. Tertikas, Series expansion for $L^p$ Hardy inequalities,, Indiana Univ. Math. J., 52 (2003), 171.  doi: 0.1512/iumj.2003.52.2207.  Google Scholar

[8]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants,, Trans. Amer. Math. Soc., 356 (2004), 2169.  doi: 10.1090/S0002-9947-03-03389-0.  Google Scholar

[9]

R. Benguria, R. Frank and M. Loss, The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space,, Math. Res. Lett., 15 (2008), 613.   Google Scholar

[10]

C. Bennett and R. Sharpley, "Interpolation of Operators,", Academic Press, (1988).   Google Scholar

[11]

H.Brezis and E.Lieb, Sobolev inequalities with remainder terms,, J. Funct. Anal., 62 (1985), 73.  doi: 10.1016/0022-1236(85)90020-5.  Google Scholar

[12]

H. Brezis and M. Marcus, Hardy's inequalities revisited,, Ann. Sc. Norm. Super. Pisa, 25 (1997), 217.   Google Scholar

[13]

H. Brezis, M. Marcus and I. Shafrir, Extremal functions for Hardy's inequality with weight,, J. Funct. Anal., 171 (2000), 177.  doi: 10.1006/jfan.1999.3504.  Google Scholar

[14]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[15]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Part. Diff. Eq., 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[16]

J. E. Brothers and W. P. Ziemer, Minimal rearrangements of Sobolev functions,, J. Reine Angew. Math., 384 (1988), 419.  doi: 10.1515/crll.1988.384.153.  Google Scholar

[17]

A. Cianchi and A. Ferone, Best remainder norms in Sobolev-Hardy inequalities,, Indiana Univ. Math. J., 58 (2009), 1051.  doi: 10.1512/iumj.2009.58.3561.  Google Scholar

[18]

G. Crasta, I. Fragalà and F. Gazzola, Some estimates for the torsional rigidity of composite rods,, Math. Nachr., 280 (2007), 242.  doi: 0.1002/mana.200410478.  Google Scholar

[19]

M. Cwikel and E. Pustylnik, Sobolev type embeddings in the limiting case,, J. Fourier Anal. Appl., 4 (1998), 433.  doi: 10.1007/BF02498218.  Google Scholar

[20]

A. Detalla, T. Horiuchi and H. Ando, Missing terms in Hardy-Sobolev inequalities and its applications,, Far East J. Math. Sci., 14 (2004), 333.   Google Scholar

[21]

J. Dolbeault, M. J. Esteban, M. Loss and L. Vega, An analytical proof of Hardy-like inequalities related to the Dirac operator,, J. Funct. Anal., 216 (2004), 1.  doi: 10.1016/j.jfa.2003.09.010.  Google Scholar

[22]

D. E. Edmunds, R. A. Kerman and L. Pick, Optimal Sobolev imbeddings involving rearrangement invariant quasi-norms,, J. Funct. Anal., 170 (2000), 307.  doi: 10.1006/jfan.1999.3508.  Google Scholar

[23]

S. Filippas, V. G. Maz'ya and A. Tertikas, On a question of Brezis and Marcus,, Calc. Var. Partial Differential Equations, 25 (2006), 491.  doi: 10.1007/s00526-005-0353-6.  Google Scholar

[24]

S. Filippas, V. G. Maz'ya and A. Tertikas, Critical Hardy-Sobolev inequalities,, J. Math. Pures Appl., 87 (2007), 37.  doi: 10.1016/j.matpur.2006.10.007.  Google Scholar

[25]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Trans. Amer. Math. Soc., 356 (2004), 2149.  doi: 10.1090/S0002-9947-03-03395-6.  Google Scholar

[26]

N. Ghoussoub and A. Moradifam, On the best possible remaining term in the Hardy inequality,, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746.  doi: 10.1073/pnas.0803703105.  Google Scholar

[27]

E. Giarrusso and D. Nunziante, Symmetrization in a class of first-order Hamilton-Jacobi equations,, Nonlinear Anal., 8 (1984), 289.  doi: 10.1016/0362-546X(84)90031-2.  Google Scholar

[28]

A. Gogatishvili, B. Opic and L. Pick, Weighted inequalities for Hardy-type operators involving suprema,, Collect. Math., 57 (2006), 227.   Google Scholar

[29]

A. Gogatishvili and L. Pick, Discretization and antidiscretization of rearrangement-invariant norms,, Publ. Mat., 47 (2003), 311.   Google Scholar

[30]

K. Hansson, Imbedding theorems of Sobolev type in potential theory,, Math. Scand., 45 (1979), 77.   Google Scholar

[31]

M. Hoffman-Ostenhof, T. Hoffman-Ostenhof and A. Laptev, A geometrical version of Hardy's inequality,, J. Funct. Anal., 189 (2002), 539.   Google Scholar

[32]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Math. 1150, (1150).   Google Scholar

[33]

V. M. Maz'ya and T. O. Shaposhnikova, "Sobolev Spaces: with Applications to Elliptic Partial Differential Equations,", Springer-Verlag, (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[34]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.   Google Scholar

[35]

R. O'Neil, Convolution operators in $L(p,q)$ spaces,, Duke Math. J., 30 (1963), 129.  doi: 10.1215/S0012-7094-63-03015-1.  Google Scholar

[36]

J. Peetre, Espaces d' interpolation et théorème de Soboleff,, Ann. Inst. Fourier, 16 (1966), 279.  doi: 10.5802/aif.232.  Google Scholar

[37]

S. I. Pohozaev, On the imbedding Sobolev theorem for $p=n$,, Doklady Conference, (1965), 158.   Google Scholar

[38]

G. Sinnamon and V. D. Stepanov, The weighted Hardy inequality: new proofs and the case $p=1$,, J. London Math. Soc., 54 (1996), 89.   Google Scholar

[39]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353.  doi: 10.1007/BF02418013.  Google Scholar

[40]

J. Tidblom, A Hardy inequality in the half-space,, J. Funct. Anal., 221 (2005), 482.  doi: 10.1016/j.jfa.2004.09.014.  Google Scholar

[41]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.   Google Scholar

[42]

V. I. Yudovic, Some estimates connected with integral operators and with solutions of elliptic equations,, Dokl. Akad. Nauk SSSR, 138 (1961), 805.   Google Scholar

[43]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103.  doi: 10.1006/jfan.1999.3556.  Google Scholar

[1]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[2]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]