\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Improving sharp Sobolev type inequalities by optimal remainder gradient norms

Abstract Related Papers Cited by
  • We are concerned with Sobolev type inequalities in $W^{1,p}_0(\Omega )$, $\Omega \subset R^n$, with optimal target norms and sharp constants. Admissible remainder terms depending on the gradient are characterized. As a consequence, the strongest possible remainder norm of the gradient is exhibited. Both the case when $p< n$ and the borderline case when $p = n$ are considered. Related Hardy inequalities with remainders are also derived.
    Mathematics Subject Classification: Primary: 46E35, 46E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications, Proc. Amer. Math. Soc., 130 (2002), 489-505.doi: 10.1090/S0002-9939-01-06132-9.

    [2]

    Adimurthi and M. J. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}$ and its applications to Schrödinger operators, NoDEA Nonlinear Differential Equation Appl., 12 (2005), 243-263.doi: 10.1007/S00030-005-0009-4.

    [3]

    A. Alvino, Sulla disuguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital., 5 (1977), 148-156.

    [4]

    A. Alvino, P.-L.Lions and G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal., 13 (1989), 185-220.doi: 10.1016/0362-546X(89)90043-6.

    [5]

    A. Alvino, R. Volpicelli and B. Volzone, On Hardy inequalities with a remainder term, Ric. Mat., 59 (2010), 265-280.doi: 10.1007/s11587-010-0086-5.

    [6]

    T. Aubin, Problèmes isopérimetriques et espaces de Sobolev, J. Diff. Geom., 11 (1976), 573-598.

    [7]

    G. Barbatis, S. Filippas and A. Tertikas, Series expansion for $L^p$ Hardy inequalities, Indiana Univ. Math. J., 52 (2003), 171-190.doi: 0.1512/iumj.2003.52.2207.

    [8]

    G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants, Trans. Amer. Math. Soc., 356 (2004), 2169-2196.doi: 10.1090/S0002-9947-03-03389-0.

    [9]

    R. Benguria, R. Frank and M. Loss, The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space, Math. Res. Lett., 15 (2008), 613-622.

    [10]

    C. Bennett and R. Sharpley, "Interpolation of Operators," Academic Press, Boston, 1988.

    [11]

    H.Brezis and E.Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal., 62 (1985), 73-86.doi: 10.1016/0022-1236(85)90020-5.

    [12]

    H. Brezis and M. Marcus, Hardy's inequalities revisited, Ann. Sc. Norm. Super. Pisa, 25 (1997), 217-237.

    [13]

    H. Brezis, M. Marcus and I. Shafrir, Extremal functions for Hardy's inequality with weight, J. Funct. Anal., 171 (2000), 177-191.doi: 10.1006/jfan.1999.3504.

    [14]

    H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405.

    [15]

    H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Part. Diff. Eq., 5 (1980), 773-789.doi: 10.1080/03605308008820154.

    [16]

    J. E. Brothers and W. P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384 (1988), 419-431.doi: 10.1515/crll.1988.384.153.

    [17]

    A. Cianchi and A. Ferone, Best remainder norms in Sobolev-Hardy inequalities, Indiana Univ. Math. J., 58 (2009), 1051-1096.doi: 10.1512/iumj.2009.58.3561.

    [18]

    G. Crasta, I. Fragalà and F. Gazzola, Some estimates for the torsional rigidity of composite rods, Math. Nachr., 280 (2007), 242-255.doi: 0.1002/mana.200410478.

    [19]

    M. Cwikel and E. Pustylnik, Sobolev type embeddings in the limiting case, J. Fourier Anal. Appl., 4 (1998), 433-446.doi: 10.1007/BF02498218.

    [20]

    A. Detalla, T. Horiuchi and H. Ando, Missing terms in Hardy-Sobolev inequalities and its applications, Far East J. Math. Sci., 14 (2004), 333-359.

    [21]

    J. Dolbeault, M. J. Esteban, M. Loss and L. Vega, An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal., 216 (2004), 1-21.doi: 10.1016/j.jfa.2003.09.010.

    [22]

    D. E. Edmunds, R. A. Kerman and L. Pick, Optimal Sobolev imbeddings involving rearrangement invariant quasi-norms, J. Funct. Anal., 170 (2000), 307-355.doi: 10.1006/jfan.1999.3508.

    [23]

    S. Filippas, V. G. Maz'ya and A. Tertikas, On a question of Brezis and Marcus, Calc. Var. Partial Differential Equations, 25 (2006), 491-501.doi: 10.1007/s00526-005-0353-6.

    [24]

    S. Filippas, V. G. Maz'ya and A. Tertikas, Critical Hardy-Sobolev inequalities, J. Math. Pures Appl., 87 (2007), 37-56.doi: 10.1016/j.matpur.2006.10.007.

    [25]

    F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc., 356 (2004), 2149-2168.doi: 10.1090/S0002-9947-03-03395-6.

    [26]

    N. Ghoussoub and A. Moradifam, On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746-13751.doi: 10.1073/pnas.0803703105.

    [27]

    E. Giarrusso and D. Nunziante, Symmetrization in a class of first-order Hamilton-Jacobi equations, Nonlinear Anal., 8 (1984), 289-299.doi: 10.1016/0362-546X(84)90031-2.

    [28]

    A. Gogatishvili, B. Opic and L. Pick, Weighted inequalities for Hardy-type operators involving suprema, Collect. Math., 57 (2006), 227-255.

    [29]

    A. Gogatishvili and L. Pick, Discretization and antidiscretization of rearrangement-invariant norms, Publ. Mat., 47 (2003), 311-358.

    [30]

    K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand., 45 (1979), 77-102.

    [31]

    M. Hoffman-Ostenhof, T. Hoffman-Ostenhof and A. Laptev, A geometrical version of Hardy's inequality, J. Funct. Anal., 189 (2002), 539-548.

    [32]

    B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE," Lecture Notes in Math. 1150, Springer-Verlag, Berlin-New York, 1985.

    [33]

    V. M. Maz'ya and T. O. Shaposhnikova, "Sobolev Spaces: with Applications to Elliptic Partial Differential Equations," Springer-Verlag, Berlin Heidelberg, 2011.doi: 10.1007/978-3-642-15564-2.

    [34]

    J. MoserA sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.

    [35]

    R. O'Neil, Convolution operators in $L(p,q)$ spaces, Duke Math. J., 30 (1963), 129-142.doi: 10.1215/S0012-7094-63-03015-1.

    [36]

    J. Peetre, Espaces d' interpolation et théorème de Soboleff, Ann. Inst. Fourier, 16 (1966), 279-317.doi: 10.5802/aif.232.

    [37]

    S. I. Pohozaev, On the imbedding Sobolev theorem for $p=n$, Doklady Conference, Section Math. Moscow Power Inst., (1965), 158-170 (Russian).

    [38]

    G. Sinnamon and V. D. Stepanov, The weighted Hardy inequality: new proofs and the case $p=1$, J. London Math. Soc., 54 (1996), 89-101.

    [39]

    G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.doi: 10.1007/BF02418013.

    [40]

    J. Tidblom, A Hardy inequality in the half-space, J. Funct. Anal., 221 (2005), 482-495.doi: 10.1016/j.jfa.2004.09.014.

    [41]

    N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.

    [42]

    V. I. Yudovic, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 138 (1961), 805-808 (Russian);

    [43]

    J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.doi: 10.1006/jfan.1999.3556.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return