July  2012, 11(4): 1397-1406. doi: 10.3934/cpaa.2012.11.1397

Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity

1. 

University of Vienna, Fakultät für Mathematik, Nordbergstraße 15, 1090 Vienna

Received  April 2011 Revised  September 2011 Published  January 2012

In the absence of stagnation points, we derive the dispersion relation for periodic travelling waves of small amplitude propagating at the surface of water with a layer of constant vorticity adjacent to the flat bed within an irrotational flow.
Citation: Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397
References:
[1]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. Google Scholar

[2]

A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train,, Eur. J. Mech. B Fluids, 30 (2011), 12. doi: 10.1016/j.euromechflu.2010.09.008. Google Scholar

[3]

A. Constantin, "Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,", CBMS-NSF Series in Applied Mathematics, (2011). Google Scholar

[4]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591. doi: 10.1215/S0012-7094-07-14034-1. Google Scholar

[5]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity,, J. Fluid Mech., 498 (2004), 171. doi: 10.1017/S0022112003006773. Google Scholar

[6]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423. doi: 10.1090/S0273-0979-07-01159-7. Google Scholar

[7]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12. Google Scholar

[8]

A. Constantin, J. Escher and H.-C. Hsu, Pressure beneath a solitary water wave: mathematical theory and experiments,, Arch. Rational Mech. Anal., 201 (2011), 251. doi: 10.1007/s00205-011-0396-0. Google Scholar

[9]

A. Constantin, D. Sattinger and W. Strauss, Variational formulations for steady water waves with vorticity,, J. Fluid Mech., 548 (2006), 151. doi: 10.1017/S0022112005007469. Google Scholar

[10]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481. doi: 10.1002/cpa.3046. Google Scholar

[11]

A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity,, Comm. Pure Appl. Math., 60 (2007), 911. doi: 10.1002/cpa.20165. Google Scholar

[12]

A. Constantin and W. Strauss, Rotational steady water waves near stagnation,, Philos. Trans. Roy. Soc. London A, 365 (2007), 2227. doi: 10.1098/rsta.2007.2004. Google Scholar

[13]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533. Google Scholar

[14]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity,, Arch. Rational Mech. Anal., 202 (2011), 133. doi: 10.1007/s00205-011-0412-4. Google Scholar

[15]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: regularity and local bifurcation,, Arch. Rational Mech. Anal., 199 (2011), 33. doi: 10.1007/s00205-010-0314-x. Google Scholar

[16]

A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity,, J. Fluid Mech., 195 (1988), 281. doi: 10.1017/S0022112088002423. Google Scholar

[17]

M. Ehrnström, On the streamlines and particle paths of gravitational water waves,, Nonlinearity, 21 (2008), 1141. doi: 10.1088/0951-7715/21/5/012. Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (2001). Google Scholar

[19]

M. Goldshtik and F. Hussain, Inviscid separation in steady planar flows,, Fluid Dynamics Research, 23 (1998), 235. doi: 10.1016/S0169-5983(98)00017-3. Google Scholar

[20]

D. Henry, Particle trajectories in linear periodic capillary and capillary-gravity water waves,, Philos. Trans. Roy. Soc. London A, 365 (2007), 2241. doi: 10.1098/rsta.2007.2005. Google Scholar

[21]

D. Henry, Steady periodic waves bifurcating for fixed-depth rotational flows,, Quart. Appl. Math. (in print)., (). Google Scholar

[22]

I. G. Jonsson, Wave-current interactions,, in, (1990), 65. Google Scholar

[23]

J. Ko and W. Strauss, Effect of vorticity on steady water waves,, J. Fluid Mech., 608 (2008), 197. doi: 10.1017/S0022112008002371. Google Scholar

[24]

J. Ko and W. Strauss, Large-amplitude steady rotational water waves,, Eur. J. Mech. B Fluids, 27 (2008), 96. doi: 10.1016/j.euromechflu.2007.04.004. Google Scholar

[25]

D. H. Peregrine, Interaction of water waves and currents,, Adv. Appl. Mech., 16 (1976), 9. doi: 10.1016/S0065-2156(08)70087-5. Google Scholar

[26]

V. V. Prasolov, "Polynomials,", Springer -Verlag, (2010). Google Scholar

[27]

W. A. Strauss, Steady water waves,, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671. Google Scholar

[28]

C. Swan, I. Cummins and R. James, An experimental study of two-dimensional surface water waves propagating on depth-varying currents,, J. Fluid Mech., 428 (2001), 273. doi: 10.1017/S0022112000002457. Google Scholar

[29]

G. Thomas and G. Klopman, Wave-current interactions in the nearshore region,, in, (1997), 215. Google Scholar

[30]

J.-P. Tignol, "Galois' Theory of Algebraic Equations,", World Scientific Publishing Co., (2001). Google Scholar

[31]

E. Varvaruca, On some properties of traveling water waves with vorticity,, SIAM J. Math. Anal., 39 (2008), 1686. doi: 10.1137/070697513. Google Scholar

[32]

E. Wahlén, Steady water waves with a critical layer,, J. Differential Equations, 246 (2009), 2468. doi: 10.1016/j.jde.2008.10.005. Google Scholar

show all references

References:
[1]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. Google Scholar

[2]

A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train,, Eur. J. Mech. B Fluids, 30 (2011), 12. doi: 10.1016/j.euromechflu.2010.09.008. Google Scholar

[3]

A. Constantin, "Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,", CBMS-NSF Series in Applied Mathematics, (2011). Google Scholar

[4]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591. doi: 10.1215/S0012-7094-07-14034-1. Google Scholar

[5]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity,, J. Fluid Mech., 498 (2004), 171. doi: 10.1017/S0022112003006773. Google Scholar

[6]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423. doi: 10.1090/S0273-0979-07-01159-7. Google Scholar

[7]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12. Google Scholar

[8]

A. Constantin, J. Escher and H.-C. Hsu, Pressure beneath a solitary water wave: mathematical theory and experiments,, Arch. Rational Mech. Anal., 201 (2011), 251. doi: 10.1007/s00205-011-0396-0. Google Scholar

[9]

A. Constantin, D. Sattinger and W. Strauss, Variational formulations for steady water waves with vorticity,, J. Fluid Mech., 548 (2006), 151. doi: 10.1017/S0022112005007469. Google Scholar

[10]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481. doi: 10.1002/cpa.3046. Google Scholar

[11]

A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity,, Comm. Pure Appl. Math., 60 (2007), 911. doi: 10.1002/cpa.20165. Google Scholar

[12]

A. Constantin and W. Strauss, Rotational steady water waves near stagnation,, Philos. Trans. Roy. Soc. London A, 365 (2007), 2227. doi: 10.1098/rsta.2007.2004. Google Scholar

[13]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533. Google Scholar

[14]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity,, Arch. Rational Mech. Anal., 202 (2011), 133. doi: 10.1007/s00205-011-0412-4. Google Scholar

[15]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: regularity and local bifurcation,, Arch. Rational Mech. Anal., 199 (2011), 33. doi: 10.1007/s00205-010-0314-x. Google Scholar

[16]

A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity,, J. Fluid Mech., 195 (1988), 281. doi: 10.1017/S0022112088002423. Google Scholar

[17]

M. Ehrnström, On the streamlines and particle paths of gravitational water waves,, Nonlinearity, 21 (2008), 1141. doi: 10.1088/0951-7715/21/5/012. Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (2001). Google Scholar

[19]

M. Goldshtik and F. Hussain, Inviscid separation in steady planar flows,, Fluid Dynamics Research, 23 (1998), 235. doi: 10.1016/S0169-5983(98)00017-3. Google Scholar

[20]

D. Henry, Particle trajectories in linear periodic capillary and capillary-gravity water waves,, Philos. Trans. Roy. Soc. London A, 365 (2007), 2241. doi: 10.1098/rsta.2007.2005. Google Scholar

[21]

D. Henry, Steady periodic waves bifurcating for fixed-depth rotational flows,, Quart. Appl. Math. (in print)., (). Google Scholar

[22]

I. G. Jonsson, Wave-current interactions,, in, (1990), 65. Google Scholar

[23]

J. Ko and W. Strauss, Effect of vorticity on steady water waves,, J. Fluid Mech., 608 (2008), 197. doi: 10.1017/S0022112008002371. Google Scholar

[24]

J. Ko and W. Strauss, Large-amplitude steady rotational water waves,, Eur. J. Mech. B Fluids, 27 (2008), 96. doi: 10.1016/j.euromechflu.2007.04.004. Google Scholar

[25]

D. H. Peregrine, Interaction of water waves and currents,, Adv. Appl. Mech., 16 (1976), 9. doi: 10.1016/S0065-2156(08)70087-5. Google Scholar

[26]

V. V. Prasolov, "Polynomials,", Springer -Verlag, (2010). Google Scholar

[27]

W. A. Strauss, Steady water waves,, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671. Google Scholar

[28]

C. Swan, I. Cummins and R. James, An experimental study of two-dimensional surface water waves propagating on depth-varying currents,, J. Fluid Mech., 428 (2001), 273. doi: 10.1017/S0022112000002457. Google Scholar

[29]

G. Thomas and G. Klopman, Wave-current interactions in the nearshore region,, in, (1997), 215. Google Scholar

[30]

J.-P. Tignol, "Galois' Theory of Algebraic Equations,", World Scientific Publishing Co., (2001). Google Scholar

[31]

E. Varvaruca, On some properties of traveling water waves with vorticity,, SIAM J. Math. Anal., 39 (2008), 1686. doi: 10.1137/070697513. Google Scholar

[32]

E. Wahlén, Steady water waves with a critical layer,, J. Differential Equations, 246 (2009), 2468. doi: 10.1016/j.jde.2008.10.005. Google Scholar

[1]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[2]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[3]

Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114

[4]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[5]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[6]

Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483

[7]

Delia Ionescu-Kruse. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1475-1496. doi: 10.3934/cpaa.2012.11.1475

[8]

Denys Dutykh, Delia Ionescu-Kruse. Effects of vorticity on the travelling waves of some shallow water two-component systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5521-5541. doi: 10.3934/dcds.2019225

[9]

Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3123-3147. doi: 10.3934/dcds.2019129

[10]

Calin Iulian Martin, Adrián Rodríguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5149-5169. doi: 10.3934/dcds.2019209

[11]

Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523

[12]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[13]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[14]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[15]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[16]

Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267

[17]

Philippe Bonneton, Nicolas Bruneau, Bruno Castelle, Fabien Marche. Large-scale vorticity generation due to dissipating waves in the surf zone. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 729-738. doi: 10.3934/dcdsb.2010.13.729

[18]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[19]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[20]

Anca-Voichita Matioc. On particle trajectories in linear deep-water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1537-1547. doi: 10.3934/cpaa.2012.11.1537

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]