Citation: |
[1] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661. |
[2] |
A. Castro and D. Córdoba, Infinite energy solutions of the surface quasi-geostrophic equation, Advances in Mathematics, 225 (2010), 1820-1829.doi: 10.1016/j.aim.2010.04.018. |
[3] |
A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35 (2002), R51-R79.doi: 10.1088/0305-4470/35/32/201. |
[4] |
A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.doi: 10.1007/s00014-003-0785-6. |
[5] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2. |
[6] |
P. Constantin, P. D. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, Comm. Pure Appl. Math., 38 (1985), 715-724.doi: 10.1002/cpa.3160380605. |
[7] |
A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math., 162 (2005), 1377-1389.doi: 10.4007/annals.2005.162.1377. |
[8] |
A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pures Appl., 86, 529-540. doi: 10.1016/j.matpur.2006.08.002. |
[9] |
A. Degasperis and M. Procesi, Asymptotic integrability, in "Symmetry and Perturbation Theory,'' Rome (1998) World Sci. Publishing, River Edge, NJ (1999) 23-37. |
[10] |
S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation, J. Statist. Phys., 59 (1990), 1251-1263.doi: 10.1007/BF01334750. |
[11] |
C. De Lellis, T. Kappeler and P. Topalov, Low-regularity solutions of the periodic Camassa-Holm equation, Comm. Partial Differential Equations, 32 (2007), 87-126.doi: 10.1080/03605300601091470. |
[12] |
N. Dunford and J. T. Schwartz, Linear operators. Part I, Wiley Classics Library. John Wiley & Sons Inc., New York, 1988. General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication. |
[13] |
D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math., 92 (1970), 102-163.doi: 10.2307/1970699. |
[14] |
J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Mathematische Zeitschrift, pages 1-17, 2010. 10.1007/s00209-010-0778-2.doi: 10.1007/s00209-010-0778-2. |
[15] |
J. Escher and B. Kolev, Right invariant Sobolev metrics $H^s$ on the diffeomorphisms group of the circle, preprint 2011. |
[16] |
J. Escher and J. Seiler, The periodic $b$-equation and Euler equations on the circle, J. Math. Phys., 51 (2010). |
[17] |
J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation, preprint 2010, arXiv:1009.1029. |
[18] |
L. Euler, Principes généraux du mouvement des fluides, Mémoires de l'académie des sciences de Berlin, 11 (1757), 274-315. |
[19] |
F. Gay-Balmaz, Infinite dimensional geodesic flows and the universal Teichmüller space, PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 2009. |
[20] |
L. Guieu and C. Roger, L'algèbre et le groupe de Virasoro, Les Publications CRM, Montreal, QC, 2007, Aspects géométriques et algébriques, généralisations. [Geometric and algebraic aspects, generalizations], With an appendix by Vlad Sergiescu. |
[21] |
R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 165-222. |
[22] |
J. K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521.doi: 10.1137/0151075. |
[23] |
B. Khesin and G. Misiołek, Euler equations on homogeneous spaces and Virasoro orbits, Adv. Math., 176 (2003), 116-144.doi: 10.1016/S0001-8708(02)00063-4. |
[24] |
B. Kolev, Some geometric investigations on the Degasperis-Procesi shallow water equation, Wave Motion, 46 (2009), 412-419.doi: 10.1016/j.wavemoti.2009.06.005. |
[25] |
J. Lenells, The Hunter-Saxton equation describes the geodesic flow on a sphere, J. Geom. Phys., 57 (2007), 2049-2064.doi: 10.1016/j.geomphys.2007.05.003. |
[26] |
J. Lenells, The Hunter-Saxton equation: a geometric approach, SIAM J. Math. Anal., 40 (2008), 266-277.doi: http://dx.doi.org/10.1137/050647451. |
[27] |
H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation, Nonlinearity, 21 (2008), 2447-2461.doi: 10.1088/0951-7715/21/10/013. |
[28] |
J. N. Pandey, "The Hilbert Transform of Schwartz Distributions and Applications," Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1996. A Wiley-Interscience Publication. |
[29] |
I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid Mech., 12 (1962), 161-168.doi: 10.1017/S0022112062000130. |
[30] |
T. Sakajo, Blow-up solutions of the Constantin-Lax-Majda equation with a generalized viscosity term, J. Math. Sci. Univ. Tokyo, 10 (2003), 187-207. |
[31] |
T. Sakajo, On global solutions for the Constantin-Lax-Majda equation with a generalized viscosity term, Nonlinearity, 16 (2003), 1319-1328.doi: 10.1088/0951-7715/16/4/307. |
[32] |
S. Schochet, Explicit solutions of the viscous model vorticity equation, Comm. Pure Appl. Math., 39 (1986), 531-537.doi: 10.1002/cpa.3160390404. |
[33] |
L. A. Takhtajan and L.-P. Teo, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc., 183 (2006), viii+119. |
[34] |
F. Tıǧlay and C. Vizman, Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications, Lett. Math. Phys., 97 (2011), 45-60.doi: 10.1007/s11005-011-0464-2. |
[35] |
E. Wegert and A. S. Vasudeva Murthy, Blow-up in a modified Constantin-Lax-Majda model for the vorticity equation, Z. Anal. Anwendungen, 18 (1999), 183-191. |
[36] |
M. Wunsch, On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric, J. Nonlinear Math. Phys., 17 (2010), 7-11.doi: 10.1142/S1402925110000544. |