Citation: |
[1] |
C. S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Euro. Jnl of Applied Mathematics, 13 (2002), 567-585.doi: doi.org/10.1017/S0956792501004661. |
[2] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: doi.org/10.1103/PhysRevLett.71.1661. |
[3] |
A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation, J. Differential Equations, 141 (1997), 218-235.doi: doi.org/10.1006/jdeq.1997.3333. |
[4] |
A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.doi: doi.org/10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. |
[5] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: doi.org/10.1007/s00205-008-0128-2. |
[6] |
A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: doi.org/10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[7] |
A. Degasperis, D. D. Holm and A. N. W. Hone, A New Integrable Equation with Peakon Solutions, Theor. and Math. Phys., 133 (2002), 1463-1474.doi: doi.org/10.1023/A:1021186408422. |
[8] |
N. Euler and M. Euler, A tree of linearisable second-order evolution equations by generalised hodograph transformations, J. Nonlinear Math. Phys., 8 (2001), 342-362.doi: doi.org/10.2991/jnmp.2001.8.3.3. |
[9] |
N. Euler and M. Euler, On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies, J. Nonlinear Math. Phys., 16 (2009), 489-504.doi: doi.org/10.1142/S1402925109000509. |
[10] |
N. Euler and M. Euler, Multipotentialisation and iterating-solution formulae: The Krichever-Novikov equation, J. Nonlinear Math. Phys., 16 Suppl. (2009), 93-106.doi: doi.org/10.1142/S1402925109000340. |
[11] |
N. Euler and M. Euler, The converse problem for the multipotentialisation of evolution equations and systems, J. Nonlinear Math. Phys., 18 Suppl. (2011), 77-105.doi: doi.org/10.1142/S1402925111001295. |
[12] |
A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys A, 41 (2008), 372002, 10 pp. |
[13] |
N. H. Ibragimov, R. S. Khamitova and A. Valenti, Self-adjointness of a generalized Camassa-Holm equation, arXiv: 1102.5719v2 [math-ph], April 1, 2011 |
[14] |
R. S. Johnson and Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 457 (2002), 63-82. |
[15] |
J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004), 151-163.doi: doi.org/10.2991/jnmp.2004.11.2.2. |
[16] |
Z. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math., 62 (2009), 125-146. |
[17] |
V. Novikov, Generalisations of the Camassa-Holm equation, J. Phys. A, 42 (2009), 342002, 14 pp. |
[18] |
X. Wu, On the Cauchy problem for the periodic generalized Degasperis-Procesi equation, J. Funct. Anal., 260 (2011), 1428-1445.doi: doi.org/10.1016/j.jfa.2010.10.014. |