• Previous Article
    Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity
  • CPAA Home
  • This Issue
  • Next Article
    On the regularity of steady periodic stratified water waves
July  2012, 11(4): 1465-1474. doi: 10.3934/cpaa.2012.11.1465

On the formation of singularities for surface water waves

1. 

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States

Received  June 2011 Revised  July 2011 Published  January 2012

A Burgers equation with fractional dispersion is proposed to model waves on the moving surface of a two-dimensional, infinitely deep water under the influence of gravity. For a certain class of initial data, the solution is shown to blow up in finite time.
Citation: Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465
References:
[1]

C. Amick, L. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form,, Acta Math., 148 (1982), 193.   Google Scholar

[2]

A. Castro, D. Córdoba, C. Fefferman, F. Gancedo and J. Gómez-Serrano, Splash singularity for water waves,, preprint, (2011).   Google Scholar

[3]

Adrian Constantin and Joachim Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.   Google Scholar

[4]

H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations,, Indiana Univ. Math. J., 58 (2009), 807.   Google Scholar

[5]

Vera Mikyoung Hur, Gain of regularity for water waves with surface tension: a model equation,, preprint, (2011).   Google Scholar

[6]

Michael Selwyn Longuet-Higgins, On the forming of sharp corners at a free surface,, Proc. R. Soc. Lond. A, 371 (1980), 453.   Google Scholar

[7]

Michael Selwyn Longuet-Higgins, On the overturning of gravity waves,, Proc. R. Soc. Lond. A, 376 (1981), 377.   Google Scholar

[8]

P. I. Naumkin and I. A. Shishmarev, "Nonlinear Nonlocal Equations in the Theory of Waves,", Translations of Mathematical Monographs, (1994).   Google Scholar

[9]

D. Howell Peregrine, Breaking waves on beaches,, Ann. Rev. Fluid Mech., 15 (1983), 149.   Google Scholar

[10]

J.-B. Song and M. L. Banner, On determining the onset and strength of breaking for deep water waves. Part I: Unforced irrotational wave groups,, Journal of Physical Oceanography, 32 (2002), 2541.   Google Scholar

[11]

R. Thom, "Structural Stability and Morphogenesis,", Benjamin, (1975).   Google Scholar

[12]

Milton Van Dyke, "An Album of Fluid Motion,", Parabolic Press, (1982).   Google Scholar

[13]

Gerald Bereford Whitham, Variational methods and applications to water waves,, Hyperbolic equations and waves (Rencontre, (1968), 153.   Google Scholar

[14]

Gerald Beresford Whitham, "Linear and Nonlinear Waves,", Reprint of the 1974 original. Pure and Applied Mathematics, (1974).   Google Scholar

[15]

Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D,, Invent. Math., 130 (1997), 39.   Google Scholar

[16]

Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc., 12 (1999), 445.   Google Scholar

[17]

Sijue Wu, Almost global wellposedness of the 2-D full water wave problem,, Invent. Math., 177 (2009), 45.   Google Scholar

[18]

E. C. Zeeman, Breaking of waves,, Warwick Symposium on Differential Equations and Dynamical Systems, 206 (1971), 2.   Google Scholar

[19]

Antoni Zygmund, "Trigonometric Series,", Volume 2, (1968).   Google Scholar

show all references

References:
[1]

C. Amick, L. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form,, Acta Math., 148 (1982), 193.   Google Scholar

[2]

A. Castro, D. Córdoba, C. Fefferman, F. Gancedo and J. Gómez-Serrano, Splash singularity for water waves,, preprint, (2011).   Google Scholar

[3]

Adrian Constantin and Joachim Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.   Google Scholar

[4]

H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations,, Indiana Univ. Math. J., 58 (2009), 807.   Google Scholar

[5]

Vera Mikyoung Hur, Gain of regularity for water waves with surface tension: a model equation,, preprint, (2011).   Google Scholar

[6]

Michael Selwyn Longuet-Higgins, On the forming of sharp corners at a free surface,, Proc. R. Soc. Lond. A, 371 (1980), 453.   Google Scholar

[7]

Michael Selwyn Longuet-Higgins, On the overturning of gravity waves,, Proc. R. Soc. Lond. A, 376 (1981), 377.   Google Scholar

[8]

P. I. Naumkin and I. A. Shishmarev, "Nonlinear Nonlocal Equations in the Theory of Waves,", Translations of Mathematical Monographs, (1994).   Google Scholar

[9]

D. Howell Peregrine, Breaking waves on beaches,, Ann. Rev. Fluid Mech., 15 (1983), 149.   Google Scholar

[10]

J.-B. Song and M. L. Banner, On determining the onset and strength of breaking for deep water waves. Part I: Unforced irrotational wave groups,, Journal of Physical Oceanography, 32 (2002), 2541.   Google Scholar

[11]

R. Thom, "Structural Stability and Morphogenesis,", Benjamin, (1975).   Google Scholar

[12]

Milton Van Dyke, "An Album of Fluid Motion,", Parabolic Press, (1982).   Google Scholar

[13]

Gerald Bereford Whitham, Variational methods and applications to water waves,, Hyperbolic equations and waves (Rencontre, (1968), 153.   Google Scholar

[14]

Gerald Beresford Whitham, "Linear and Nonlinear Waves,", Reprint of the 1974 original. Pure and Applied Mathematics, (1974).   Google Scholar

[15]

Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D,, Invent. Math., 130 (1997), 39.   Google Scholar

[16]

Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc., 12 (1999), 445.   Google Scholar

[17]

Sijue Wu, Almost global wellposedness of the 2-D full water wave problem,, Invent. Math., 177 (2009), 45.   Google Scholar

[18]

E. C. Zeeman, Breaking of waves,, Warwick Symposium on Differential Equations and Dynamical Systems, 206 (1971), 2.   Google Scholar

[19]

Antoni Zygmund, "Trigonometric Series,", Volume 2, (1968).   Google Scholar

[1]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[2]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[3]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[4]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[5]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[8]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[9]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[10]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[13]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[17]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]