January  2012, 11(1): 147-172. doi: 10.3934/cpaa.2012.11.147

Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes

1. 

Université Paris-Est Marne-La-Vallée, 5 bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2

2. 

Slovak University of Technology, Slovak Republic, Slovak Republic

Received  December 2009 Revised  September 2010 Published  September 2011

We consider a family of space discretisations for the approximation of nonlinear parabolic equations, such as the regularised mean curvature flow level set equation, using semi-implicit or fully implicit time schemes. The approximate solution provided by such a scheme is shown to converge thanks to compactness and monotony arguments. Numerical examples show the accuracy of the method.
Citation: Robert Eymard, Angela Handlovičová, Karol Mikula. Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes. Communications on Pure & Applied Analysis, 2012, 11 (1) : 147-172. doi: 10.3934/cpaa.2012.11.147
References:
[1]

Ivar Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media,, J. Comput. Phys., 127 (1996), 2.  doi: 10.1006/jcph.1996.0154.  Google Scholar

[2]

Leo Agelas and Roland Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes,, C. R., 346 (2008), 1007.  doi: 10.1016/j.crma.2008.07.015.  Google Scholar

[3]

Y. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation,, J. Differential Geometry, 33 (1991), 749.   Google Scholar

[4]

S. Corsaro, K. Mikula, A. Sarti and F. Sgallari, Semi-implicit co-volume method in 3D image segmentation,, SIAM Journal on Scientific Computing, 28 (2006), 2248.  doi: 10.1137/060651203.  Google Scholar

[5]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature I,, J. Differential Geometry, 33 (1991), 635.   Google Scholar

[6]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods,, Techniques of Scientific Computing, (2000), 713.   Google Scholar

[7]

R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces,, IMA Journal of Numerical Analysis, (2009).  doi: 10.1093/imanum/drn084.  Google Scholar

[8]

R. Eymard, A. Handlovičová and K. Mikula, Study of a finite volume scheme for the regularized mean curvature flow level set equation,, IMA Journal of Numerical Analysis, (2010).  doi: 10.1093/imanum/drq025.  Google Scholar

[9]

R. Eymard, R. Herbin and J. C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes,, SIAM Journal on Numerical Analysis, 45 (2007), 1.  doi: 10.1137/040613081.  Google Scholar

[10]

P. Frolkovič and K. Mikula, Flux based levelset method: a finite volume method for evolving interfaces,, Applied Numerical Mathematics, 57 (2007), 436.  doi: 10.1016/j.apnum.2006.06.002.  Google Scholar

[11]

A. Handlovičová, K. Mikula and F. Sgallari, Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution,, Numer. Math., 93 (2003), 675.  doi: 10.1007/s002110100374.  Google Scholar

[12]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder,, Bull. Soc. Math. France, 93 (1965), 97.   Google Scholar

[13]

K. Lipnikov, M. Shashkov and I. Yotov, Local flux mimetic finite difference methods,, Numer. Math., 112 (2009), 115.  doi: 10.1007/s00211-008-0203-5.  Google Scholar

[14]

S. Nemadjieu and M Rumpf, Finite volume schemes on simplices,, Personal communication, (2009).   Google Scholar

[15]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature,, Numer. Math., 99 (2004), 365.  doi: 10.1007/s00211-004-0566-1.  Google Scholar

[16]

N. J. Walkington, Algorithms for computing motion by mean curvature,, SIAM J. Numer. Anal., 33 (1996), 2215.  doi: 10.1137/S0036142994262068.  Google Scholar

show all references

References:
[1]

Ivar Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media,, J. Comput. Phys., 127 (1996), 2.  doi: 10.1006/jcph.1996.0154.  Google Scholar

[2]

Leo Agelas and Roland Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes,, C. R., 346 (2008), 1007.  doi: 10.1016/j.crma.2008.07.015.  Google Scholar

[3]

Y. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation,, J. Differential Geometry, 33 (1991), 749.   Google Scholar

[4]

S. Corsaro, K. Mikula, A. Sarti and F. Sgallari, Semi-implicit co-volume method in 3D image segmentation,, SIAM Journal on Scientific Computing, 28 (2006), 2248.  doi: 10.1137/060651203.  Google Scholar

[5]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature I,, J. Differential Geometry, 33 (1991), 635.   Google Scholar

[6]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods,, Techniques of Scientific Computing, (2000), 713.   Google Scholar

[7]

R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces,, IMA Journal of Numerical Analysis, (2009).  doi: 10.1093/imanum/drn084.  Google Scholar

[8]

R. Eymard, A. Handlovičová and K. Mikula, Study of a finite volume scheme for the regularized mean curvature flow level set equation,, IMA Journal of Numerical Analysis, (2010).  doi: 10.1093/imanum/drq025.  Google Scholar

[9]

R. Eymard, R. Herbin and J. C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes,, SIAM Journal on Numerical Analysis, 45 (2007), 1.  doi: 10.1137/040613081.  Google Scholar

[10]

P. Frolkovič and K. Mikula, Flux based levelset method: a finite volume method for evolving interfaces,, Applied Numerical Mathematics, 57 (2007), 436.  doi: 10.1016/j.apnum.2006.06.002.  Google Scholar

[11]

A. Handlovičová, K. Mikula and F. Sgallari, Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution,, Numer. Math., 93 (2003), 675.  doi: 10.1007/s002110100374.  Google Scholar

[12]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder,, Bull. Soc. Math. France, 93 (1965), 97.   Google Scholar

[13]

K. Lipnikov, M. Shashkov and I. Yotov, Local flux mimetic finite difference methods,, Numer. Math., 112 (2009), 115.  doi: 10.1007/s00211-008-0203-5.  Google Scholar

[14]

S. Nemadjieu and M Rumpf, Finite volume schemes on simplices,, Personal communication, (2009).   Google Scholar

[15]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature,, Numer. Math., 99 (2004), 365.  doi: 10.1007/s00211-004-0566-1.  Google Scholar

[16]

N. J. Walkington, Algorithms for computing motion by mean curvature,, SIAM J. Numer. Anal., 33 (1996), 2215.  doi: 10.1137/S0036142994262068.  Google Scholar

[1]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[2]

François Alouges. A new finite element scheme for Landau-Lifchitz equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 187-196. doi: 10.3934/dcdss.2008.1.187

[3]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020226

[4]

Changling Xu, Tianliang Hou. Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28 (2) : 897-910. doi: 10.3934/era.2020047

[5]

Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713

[6]

Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28 (2) : 821-836. doi: 10.3934/era.2020042

[7]

Pavol Kútik, Karol Mikula. Diamond--cell finite volume scheme for the Heston model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 913-931. doi: 10.3934/dcdss.2015.8.913

[8]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

[9]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[10]

Mohamed Alahyane, Abdelilah Hakim, Amine Laghrib, Said Raghay. Fluid image registration using a finite volume scheme of the incompressible Navier Stokes equation. Inverse Problems & Imaging, 2018, 12 (5) : 1055-1081. doi: 10.3934/ipi.2018044

[11]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1349-1368. doi: 10.3934/jimo.2019006

[12]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[13]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[14]

Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems. Electronic Research Announcements, 2019, 26: 54-71. doi: 10.3934/era.2019.26.005

[15]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[16]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[17]

Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355

[18]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020402

[19]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[20]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

[Back to Top]