January  2012, 11(1): 147-172. doi: 10.3934/cpaa.2012.11.147

Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes

1. 

Université Paris-Est Marne-La-Vallée, 5 bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2

2. 

Slovak University of Technology, Slovak Republic, Slovak Republic

Received  December 2009 Revised  September 2010 Published  September 2011

We consider a family of space discretisations for the approximation of nonlinear parabolic equations, such as the regularised mean curvature flow level set equation, using semi-implicit or fully implicit time schemes. The approximate solution provided by such a scheme is shown to converge thanks to compactness and monotony arguments. Numerical examples show the accuracy of the method.
Citation: Robert Eymard, Angela Handlovičová, Karol Mikula. Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes. Communications on Pure & Applied Analysis, 2012, 11 (1) : 147-172. doi: 10.3934/cpaa.2012.11.147
References:
[1]

Ivar Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media,, J. Comput. Phys., 127 (1996), 2.  doi: 10.1006/jcph.1996.0154.  Google Scholar

[2]

Leo Agelas and Roland Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes,, C. R., 346 (2008), 1007.  doi: 10.1016/j.crma.2008.07.015.  Google Scholar

[3]

Y. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation,, J. Differential Geometry, 33 (1991), 749.   Google Scholar

[4]

S. Corsaro, K. Mikula, A. Sarti and F. Sgallari, Semi-implicit co-volume method in 3D image segmentation,, SIAM Journal on Scientific Computing, 28 (2006), 2248.  doi: 10.1137/060651203.  Google Scholar

[5]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature I,, J. Differential Geometry, 33 (1991), 635.   Google Scholar

[6]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods,, Techniques of Scientific Computing, (2000), 713.   Google Scholar

[7]

R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces,, IMA Journal of Numerical Analysis, (2009).  doi: 10.1093/imanum/drn084.  Google Scholar

[8]

R. Eymard, A. Handlovičová and K. Mikula, Study of a finite volume scheme for the regularized mean curvature flow level set equation,, IMA Journal of Numerical Analysis, (2010).  doi: 10.1093/imanum/drq025.  Google Scholar

[9]

R. Eymard, R. Herbin and J. C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes,, SIAM Journal on Numerical Analysis, 45 (2007), 1.  doi: 10.1137/040613081.  Google Scholar

[10]

P. Frolkovič and K. Mikula, Flux based levelset method: a finite volume method for evolving interfaces,, Applied Numerical Mathematics, 57 (2007), 436.  doi: 10.1016/j.apnum.2006.06.002.  Google Scholar

[11]

A. Handlovičová, K. Mikula and F. Sgallari, Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution,, Numer. Math., 93 (2003), 675.  doi: 10.1007/s002110100374.  Google Scholar

[12]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder,, Bull. Soc. Math. France, 93 (1965), 97.   Google Scholar

[13]

K. Lipnikov, M. Shashkov and I. Yotov, Local flux mimetic finite difference methods,, Numer. Math., 112 (2009), 115.  doi: 10.1007/s00211-008-0203-5.  Google Scholar

[14]

S. Nemadjieu and M Rumpf, Finite volume schemes on simplices,, Personal communication, (2009).   Google Scholar

[15]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature,, Numer. Math., 99 (2004), 365.  doi: 10.1007/s00211-004-0566-1.  Google Scholar

[16]

N. J. Walkington, Algorithms for computing motion by mean curvature,, SIAM J. Numer. Anal., 33 (1996), 2215.  doi: 10.1137/S0036142994262068.  Google Scholar

show all references

References:
[1]

Ivar Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media,, J. Comput. Phys., 127 (1996), 2.  doi: 10.1006/jcph.1996.0154.  Google Scholar

[2]

Leo Agelas and Roland Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes,, C. R., 346 (2008), 1007.  doi: 10.1016/j.crma.2008.07.015.  Google Scholar

[3]

Y. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation,, J. Differential Geometry, 33 (1991), 749.   Google Scholar

[4]

S. Corsaro, K. Mikula, A. Sarti and F. Sgallari, Semi-implicit co-volume method in 3D image segmentation,, SIAM Journal on Scientific Computing, 28 (2006), 2248.  doi: 10.1137/060651203.  Google Scholar

[5]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature I,, J. Differential Geometry, 33 (1991), 635.   Google Scholar

[6]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods,, Techniques of Scientific Computing, (2000), 713.   Google Scholar

[7]

R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces,, IMA Journal of Numerical Analysis, (2009).  doi: 10.1093/imanum/drn084.  Google Scholar

[8]

R. Eymard, A. Handlovičová and K. Mikula, Study of a finite volume scheme for the regularized mean curvature flow level set equation,, IMA Journal of Numerical Analysis, (2010).  doi: 10.1093/imanum/drq025.  Google Scholar

[9]

R. Eymard, R. Herbin and J. C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes,, SIAM Journal on Numerical Analysis, 45 (2007), 1.  doi: 10.1137/040613081.  Google Scholar

[10]

P. Frolkovič and K. Mikula, Flux based levelset method: a finite volume method for evolving interfaces,, Applied Numerical Mathematics, 57 (2007), 436.  doi: 10.1016/j.apnum.2006.06.002.  Google Scholar

[11]

A. Handlovičová, K. Mikula and F. Sgallari, Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution,, Numer. Math., 93 (2003), 675.  doi: 10.1007/s002110100374.  Google Scholar

[12]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder,, Bull. Soc. Math. France, 93 (1965), 97.   Google Scholar

[13]

K. Lipnikov, M. Shashkov and I. Yotov, Local flux mimetic finite difference methods,, Numer. Math., 112 (2009), 115.  doi: 10.1007/s00211-008-0203-5.  Google Scholar

[14]

S. Nemadjieu and M Rumpf, Finite volume schemes on simplices,, Personal communication, (2009).   Google Scholar

[15]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature,, Numer. Math., 99 (2004), 365.  doi: 10.1007/s00211-004-0566-1.  Google Scholar

[16]

N. J. Walkington, Algorithms for computing motion by mean curvature,, SIAM J. Numer. Anal., 33 (1996), 2215.  doi: 10.1137/S0036142994262068.  Google Scholar

[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[5]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[14]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[15]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[16]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[17]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[18]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[19]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

[Back to Top]