\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes

Abstract Related Papers Cited by
  • We consider a family of space discretisations for the approximation of nonlinear parabolic equations, such as the regularised mean curvature flow level set equation, using semi-implicit or fully implicit time schemes. The approximate solution provided by such a scheme is shown to converge thanks to compactness and monotony arguments. Numerical examples show the accuracy of the method.
    Mathematics Subject Classification: Primary: 65M08; Secondary: 35K93.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Ivar Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media, J. Comput. Phys., 127 (1996), 2-14 (English).doi: 10.1006/jcph.1996.0154.

    [2]

    Leo Agelas and Roland Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R., Math., Acad. Sci. Paris, 346 (2008), 1007-1012 (English).doi: 10.1016/j.crma.2008.07.015.

    [3]

    Y. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geometry, 33 (1991), 749-786.

    [4]

    S. Corsaro, K. Mikula, A. Sarti and F. Sgallari, Semi-implicit co-volume method in 3D image segmentation, SIAM Journal on Scientific Computing, 28 (2006), 2248-2265.doi: 10.1137/060651203.

    [5]

    L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differential Geometry, 33 (1991), 635-681.

    [6]

    R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Techniques of Scientific Computing, Part III (P. G. Ciarlet and J.-L. Lions, eds.), Handbook of Numerical Analysis, VII, North-Holland, Amsterdam, 2000, pp. 713-1020.

    [7]

    R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces, IMA Journal of Numerical Analysis, (2009).doi: 10.1093/imanum/drn084.

    [8]

    R. Eymard, A. Handlovičová and K. Mikula, Study of a finite volume scheme for the regularized mean curvature flow level set equation, IMA Journal of Numerical Analysis, (2010).doi: 10.1093/imanum/drq025.

    [9]

    R. Eymard, R. Herbin and J. C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes, SIAM Journal on Numerical Analysis, 45 (2007), 1-36.doi: 10.1137/040613081.

    [10]

    P. Frolkovič and K. Mikula, Flux based levelset method: a finite volume method for evolving interfaces, Applied Numerical Mathematics, 57 (2007), 436-454.doi: 10.1016/j.apnum.2006.06.002.

    [11]

    A. Handlovičová, K. Mikula and F. Sgallari, Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution, Numer. Math., 93 (2003), 675-695.doi: 10.1007/s002110100374.

    [12]

    J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.

    [13]

    K. Lipnikov, M. Shashkov and I. Yotov, Local flux mimetic finite difference methods, Numer. Math., 112 (2009), 115-152.doi: 10.1007/s00211-008-0203-5.

    [14]

    S. Nemadjieu and M Rumpf, Finite volume schemes on simplices, Personal communication, (2009).

    [15]

    A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature, Numer. Math., 99 (2004), 365-379.doi: 10.1007/s00211-004-0566-1.

    [16]

    N. J. Walkington, Algorithms for computing motion by mean curvature, SIAM J. Numer. Anal., 33 (1996), 2215-2238.doi: 10.1137/S0036142994262068.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return