-
Previous Article
The 2-component dispersionless Burgers equation arising in the modelling of blood flow
- CPAA Home
- This Issue
-
Next Article
On particle trajectories in linear deep-water waves
Effects of shear flow on KdV balance - applications to tsunami
1. | Fakultät für Mathematik, University of Vienna, Nordbergstr. 15, 1090 Vienna, Austria |
References:
[1] |
B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water waves and asymptotics,, Invent. Math., 171 (2008), 485.
doi: 10.1007/s00222-007-0088-4. |
[2] |
T. B. Benjamin, The solitary wave on a stream with an arbitrary distribution of vorticity,, J. Fluid Mech., 12 (1962), 97.
doi: 10.1017/S0022112062000063. |
[3] |
D. J. Benney and R. F. Bergeron, A new class of nonlinear waves in parallel flows (Nonlinear waves in parallel shear flows, discussing laminar flow breakdown due to free stream disturbances),, Stud. Appl. Math., 48 (1969), 181. Google Scholar |
[4] |
N. Bowditch, "The American Practical Navigator,", National Imagery and Mapping Agency, (1995). Google Scholar |
[5] |
J. C. Burns, Long waves in running water,, Proc. Camb. Phil. Soc., 4 (1953), 695.
doi: 10.1017/S0305004100028899. |
[6] |
A. Constantin, On the deep water wave motion,, J. Phys. A, 34 (2001), 1405.
doi: 10.1088/0305-4470/34/7/313. |
[7] |
A. Constantin, On the propagation of tsunami waves, with emphasis on the tsunami of 2004,, Discrete Cont. Dyn.-B, 12 (2009), 525.
doi: 10.3934/dcdsb.2009.12.525. |
[8] |
A. Constantin, On the relevance of soliton theory to tsunami modelling,, Wave Motion, 46 (2009), 420.
doi: 10.1016/j.wavemoti.2009.05.002. |
[9] |
A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train,, Eur. J. Mech. B Fluids, 30 (2011), 12.
doi: 10.1016/j.euromechflu.2010.09.008. |
[10] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.
doi: 10.4007/annals.2011.173.1.12. |
[11] |
A. Constantin and D. Henry, Solitons and Tsunamis,, Z. Naturforsch, 64a (2009), 65. Google Scholar |
[12] |
A. Constantin and R. S. Johnson, Modelling tsunamis,, J. Phys. A, 39 (2006).
doi: 10.1088/0305-4470/39/14/L01. |
[13] |
A. Constantin and R. S. Johnson, On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves,, J. Nonlinear Math. Phys., 15 (2008), 58.
doi: 10.2991/jnmp.2008.15.s2.5. |
[14] |
A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dyn. Res., 40 (2008), 175.
doi: 10.1088/0169-5983/42/3/038901. |
[15] |
A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Commun. Pure Appl. Math., 57 (2004), 481.
doi: 10.1002/cpa.3046. |
[16] |
A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: regularity and local bifurcation,, Arch. Rational Mech. Anal., 199 (2011), 33.
doi: 10.1007/s00205-010-0314-x. |
[17] |
N. C. Freeman and R. S. Johnson, Shallow water waves on shear flows,, J. Fluid Mech., 42 (1970), 401.
doi: 10.1017/S0022112070001349. |
[18] |
F. Gerstner, Theorie der Wellen samt einer abgeleiteten Theorie der Deichprofile,, Abh. b{\, 1 (1804). Google Scholar |
[19] |
J. L. Hammack and H. Segur, The Korteweg-de Vries equation and water waves. Part 2: Comparison with experiments,, J. Fluid Mech., 65 (1974), 289.
doi: 10.1017/S002211207400139X. |
[20] |
J. L. Hammack and H. Segur, The Korteweg-de Vries equation and water waves. Part 3: Oscillatory waves,, J. Fluid Mech., 84 (1978), 337.
doi: 10.1017/S0022112078000208. |
[21] |
D. Henry, On Gerstner's Water Wave,, J. Nonlinear Math. Phys., 15 (2008), 87.
doi: 10.2991/jnmp.2008.15.s2.7. |
[22] |
R. S. Johnson, On the nonlinear critical layer below a nonlinear unsteady surface wave,, J. Fluid Mech., 167 (1986), 327.
doi: 10.1017/S0022112086002847. |
[23] |
R. S. Johnson, On solutions of the Burns condition (which determines the speed of propagation of linear long waves on a shear flow with or without a critical layer),, Geophys. Astrophys. Fluid. Dyn., 57 (1991), 115.
doi: 10.1080/03091929108225231. |
[24] |
R. S. Johnson, "A Modern Introduction to the Mathematical Theory of Water Waves,'', Cambridge University Press, (1997).
doi: 10.1017/CBO9780511624056. |
[25] |
M. Lakshmanan, Integrable Nonlinear wave equations and possible connections to tsunami dynamics,, in, (2007), 31.
doi: 10.1007/978-3-540-71256-5_2. |
[26] |
J. Lighthill, "Waves in fluids,'', Cambridge University Press, (1978).
|
[27] |
F. Omori, On tsunamis around Japan,, Rep. Imp. Earthquake Comm., 34 (1902), 5. Google Scholar |
[28] |
W. J. M. Rankine, On the exact form of waves near the surface of deep water,, Philos. Trans. Roy. Soc. London Ser. A, 153 (1863), 127. Google Scholar |
[29] |
H. Segur, The Korteweg-de Vries equation and water waves. Solutions of the equation. Part 1,, J. Fluid Mech., 59 (1973), 721.
doi: 10.1017/S0022112073001813. |
[30] |
H. Segur, Waves in shallow water, with emphasis on the tsunami of 2004,, in, (2007), 3.
doi: 10.1007/978-3-540-71256-5_1. |
[31] |
H. Segur, Integrable models of waves in shallow water,, in, (2008), 345.
|
[32] |
R. Stuhlmeier, KdV theory and the Chilean tsunami of 1960,, Discrete Cont. Dyn.-B, 12 (2009), 623.
doi: 10.3934/dcdsb.2009.12.623. |
[33] |
A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity,, J. Fluid Mech., 195 (1988), 281.
doi: 10.1017/S0022112088002423. |
[34] |
F. Ursell, The long-wave paradox in the theory of gravity waves,, Math. Proc. Cambridge Philos. Soc., 49 (1953), 685.
doi: 10.1017/S0305004100028887. |
[35] |
E. Wahlén, Steady water waves with a critical layer,, J. Differential Equations, 246 (2009), 2468.
doi: 10.1016/j.jde.2008.10.005. |
[36] |
C. S. Yih, Surface waves in flowing water,, J. Fluid Mech., 51 (1972), 209. Google Scholar |
show all references
References:
[1] |
B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water waves and asymptotics,, Invent. Math., 171 (2008), 485.
doi: 10.1007/s00222-007-0088-4. |
[2] |
T. B. Benjamin, The solitary wave on a stream with an arbitrary distribution of vorticity,, J. Fluid Mech., 12 (1962), 97.
doi: 10.1017/S0022112062000063. |
[3] |
D. J. Benney and R. F. Bergeron, A new class of nonlinear waves in parallel flows (Nonlinear waves in parallel shear flows, discussing laminar flow breakdown due to free stream disturbances),, Stud. Appl. Math., 48 (1969), 181. Google Scholar |
[4] |
N. Bowditch, "The American Practical Navigator,", National Imagery and Mapping Agency, (1995). Google Scholar |
[5] |
J. C. Burns, Long waves in running water,, Proc. Camb. Phil. Soc., 4 (1953), 695.
doi: 10.1017/S0305004100028899. |
[6] |
A. Constantin, On the deep water wave motion,, J. Phys. A, 34 (2001), 1405.
doi: 10.1088/0305-4470/34/7/313. |
[7] |
A. Constantin, On the propagation of tsunami waves, with emphasis on the tsunami of 2004,, Discrete Cont. Dyn.-B, 12 (2009), 525.
doi: 10.3934/dcdsb.2009.12.525. |
[8] |
A. Constantin, On the relevance of soliton theory to tsunami modelling,, Wave Motion, 46 (2009), 420.
doi: 10.1016/j.wavemoti.2009.05.002. |
[9] |
A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train,, Eur. J. Mech. B Fluids, 30 (2011), 12.
doi: 10.1016/j.euromechflu.2010.09.008. |
[10] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.
doi: 10.4007/annals.2011.173.1.12. |
[11] |
A. Constantin and D. Henry, Solitons and Tsunamis,, Z. Naturforsch, 64a (2009), 65. Google Scholar |
[12] |
A. Constantin and R. S. Johnson, Modelling tsunamis,, J. Phys. A, 39 (2006).
doi: 10.1088/0305-4470/39/14/L01. |
[13] |
A. Constantin and R. S. Johnson, On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves,, J. Nonlinear Math. Phys., 15 (2008), 58.
doi: 10.2991/jnmp.2008.15.s2.5. |
[14] |
A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dyn. Res., 40 (2008), 175.
doi: 10.1088/0169-5983/42/3/038901. |
[15] |
A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Commun. Pure Appl. Math., 57 (2004), 481.
doi: 10.1002/cpa.3046. |
[16] |
A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: regularity and local bifurcation,, Arch. Rational Mech. Anal., 199 (2011), 33.
doi: 10.1007/s00205-010-0314-x. |
[17] |
N. C. Freeman and R. S. Johnson, Shallow water waves on shear flows,, J. Fluid Mech., 42 (1970), 401.
doi: 10.1017/S0022112070001349. |
[18] |
F. Gerstner, Theorie der Wellen samt einer abgeleiteten Theorie der Deichprofile,, Abh. b{\, 1 (1804). Google Scholar |
[19] |
J. L. Hammack and H. Segur, The Korteweg-de Vries equation and water waves. Part 2: Comparison with experiments,, J. Fluid Mech., 65 (1974), 289.
doi: 10.1017/S002211207400139X. |
[20] |
J. L. Hammack and H. Segur, The Korteweg-de Vries equation and water waves. Part 3: Oscillatory waves,, J. Fluid Mech., 84 (1978), 337.
doi: 10.1017/S0022112078000208. |
[21] |
D. Henry, On Gerstner's Water Wave,, J. Nonlinear Math. Phys., 15 (2008), 87.
doi: 10.2991/jnmp.2008.15.s2.7. |
[22] |
R. S. Johnson, On the nonlinear critical layer below a nonlinear unsteady surface wave,, J. Fluid Mech., 167 (1986), 327.
doi: 10.1017/S0022112086002847. |
[23] |
R. S. Johnson, On solutions of the Burns condition (which determines the speed of propagation of linear long waves on a shear flow with or without a critical layer),, Geophys. Astrophys. Fluid. Dyn., 57 (1991), 115.
doi: 10.1080/03091929108225231. |
[24] |
R. S. Johnson, "A Modern Introduction to the Mathematical Theory of Water Waves,'', Cambridge University Press, (1997).
doi: 10.1017/CBO9780511624056. |
[25] |
M. Lakshmanan, Integrable Nonlinear wave equations and possible connections to tsunami dynamics,, in, (2007), 31.
doi: 10.1007/978-3-540-71256-5_2. |
[26] |
J. Lighthill, "Waves in fluids,'', Cambridge University Press, (1978).
|
[27] |
F. Omori, On tsunamis around Japan,, Rep. Imp. Earthquake Comm., 34 (1902), 5. Google Scholar |
[28] |
W. J. M. Rankine, On the exact form of waves near the surface of deep water,, Philos. Trans. Roy. Soc. London Ser. A, 153 (1863), 127. Google Scholar |
[29] |
H. Segur, The Korteweg-de Vries equation and water waves. Solutions of the equation. Part 1,, J. Fluid Mech., 59 (1973), 721.
doi: 10.1017/S0022112073001813. |
[30] |
H. Segur, Waves in shallow water, with emphasis on the tsunami of 2004,, in, (2007), 3.
doi: 10.1007/978-3-540-71256-5_1. |
[31] |
H. Segur, Integrable models of waves in shallow water,, in, (2008), 345.
|
[32] |
R. Stuhlmeier, KdV theory and the Chilean tsunami of 1960,, Discrete Cont. Dyn.-B, 12 (2009), 623.
doi: 10.3934/dcdsb.2009.12.623. |
[33] |
A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity,, J. Fluid Mech., 195 (1988), 281.
doi: 10.1017/S0022112088002423. |
[34] |
F. Ursell, The long-wave paradox in the theory of gravity waves,, Math. Proc. Cambridge Philos. Soc., 49 (1953), 685.
doi: 10.1017/S0305004100028887. |
[35] |
E. Wahlén, Steady water waves with a critical layer,, J. Differential Equations, 246 (2009), 2468.
doi: 10.1016/j.jde.2008.10.005. |
[36] |
C. S. Yih, Surface waves in flowing water,, J. Fluid Mech., 51 (1972), 209. Google Scholar |
[1] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[2] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[3] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[4] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[5] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[6] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[7] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[8] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[9] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[10] |
Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166 |
[11] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[12] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[13] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[14] |
Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045 |
[15] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[16] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
[17] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[18] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[19] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[20] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]