July  2012, 11(4): 1563-1576. doi: 10.3934/cpaa.2012.11.1563

The 2-component dispersionless Burgers equation arising in the modelling of blood flow

1. 

School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland

Received  May 2011 Revised  June 2011 Published  January 2012

This article investigates the properties of the solutions of the dispersionless two-component Burgers (B2) equation, derived as a model for blood-flow in arteries with elastic walls. The phenomenon of wave breaking is investigated as well as applications of the model to clinical conditions.
Citation: Tony Lyons. The 2-component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1563-1576. doi: 10.3934/cpaa.2012.11.1563
References:
[1]

D. J. Acheson, "Elementary Fluid Dynamics," Oxford University Press, Oxford, 1990.

[2]

M. Aniker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries. Part I: derivation and properties of mathematical model, Zeitschrift für Angewandte Mathematik und Physik., 22 (1971a), 217-246.

[3]

M. Aniker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries. Part II: parametric study related to clinical problems, Zeitschrift für Angewandte Mathematik und Physik., 22 (1971b), 563-581.

[4]

F. Bauer and J. A. Nohel, "The Qualitative Theory of Ordinary Differential Equations: An Introduction," W.A Benjamin, New York, 1969.

[5]

R. Beals, D. Sattinger and J. Szmigielski, Accoustic scattering and the extended KdV hierachy, Adv. Math., 140 (1998), 190-206. doi: doi: 10.1005/aima.1998.1768.

[6]

A Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschi, Long-time asymptotics for teh Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588. doi: doi: 10.1137/090748500.

[7]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: doi: 10.1103/PhysRevLett.71.1661.

[8]

M. Chen, S.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15; nlin.SI/0501028.

[9]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, International Mathematics Research Notices, Article ID rnq118 (2010), 36 pages. doi: doi10.1093/imrn/rnq118.

[10]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shalow water equation, Acta. Math., 181 (1998), 229-243. doi: doi: 10.1007/BF02392586.

[11]

A. Constantin, V. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa -Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: doi: 10.1088/0266-5611/22/6/017.

[12]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: doi: 10.1016/j.physleta.2008.10.050.

[13]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam Res., 40 (2008), 175-211.

[14]

A. Constantin and D. Lannes, The hydro-dynamical relevance of teh Camassa-Holm and Degasperis-Proceisi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Commun. Pure Appl. Math., 52 (1999), 949-982.

[16]

A. Constantin and W. Strauss, Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270 (200), 140-148.

[17]

H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta. Math., 127 (1998), 193-207.

[18]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.

[19]

J. Escher and Z. Yin, Well-posedness, blow-up phenomena and global solutions for the b-equation, J. Reine Angew. Math., 624 (2008), 51-80. doi: doi: 10.1515/CRELLE.2008.080.

[20]

G. Falqui, On a Camassa-Holm type equation with two dependent variables, J. Phys. A, 39 (2006), 327-342. doi: doi: 10.1088/0305-4470/39/2/004.

[21]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278. doi: doi: 10.1016/j.jfa.2010.02.008.

[22]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009) 597-606. doi: doi: 10.3934/dcdsb.2009.12.597.

[23]

D. D. Holm and C. Tronci, Geodesic Vlasov equations and their integrable moment closures, J. Geom. Mech., 1 (2009), 181-208.

[24]

D. D. Holm and R. I. Ivanov, Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems, 27 (2011), 045013. doi: doi: 10.1088/0266-5611/27/4/045013.

[25]

R. I. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Z. Naturforsch., 61a (2006), 133-138; nlin.SI/0601066.

[26]

R. I. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396.

[27]

R. S. Johnson, Camassa-Holm, Kortweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82. doi: doi: 10.1017/S0022112001007224.

[28]

J. Keener and J. Sneyd, "Mathematical Physiology 1: Cellular Physiology," Springer, 2009.

[29]

Y. Kodama and B. Konopelchenko, Singular sector of the Burgers-Hopf hierarchy and deformations of hyperelliptic curves, J. Phys. A: Math. Gen., 35 (2002), L489-L500.

[30]

J. Lighthill, "Mathematical Biofluiddynamics," SIAM, Philadelphia, PA. 1975.

[31]

S.-Q. Liu and Y. Zhang, Deformations of semisimple bi-Hamiltonian structures of hydrodynamic type, J. Geom. Phys., 54 (2005), 427-53. doi: 10.1088/0305-4470/35/31/104.

[32]

P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906. doi: 10.1103/PhysRevE.53.1900.

[33]

T. J. Pedley, Blood flow in arteries and veins, in "Perspectives in Fluid Dynamics," Cambridge University Press, 2003.

[34]

W. A. Strauss, "Partial Differential Equations: An Introduction," John Wiley & Sons Inc., 1990.

[35]

G. B Whitham, "Linear and Nonlinear Waves," John Wiley & Sons, New York, 1980.

show all references

References:
[1]

D. J. Acheson, "Elementary Fluid Dynamics," Oxford University Press, Oxford, 1990.

[2]

M. Aniker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries. Part I: derivation and properties of mathematical model, Zeitschrift für Angewandte Mathematik und Physik., 22 (1971a), 217-246.

[3]

M. Aniker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries. Part II: parametric study related to clinical problems, Zeitschrift für Angewandte Mathematik und Physik., 22 (1971b), 563-581.

[4]

F. Bauer and J. A. Nohel, "The Qualitative Theory of Ordinary Differential Equations: An Introduction," W.A Benjamin, New York, 1969.

[5]

R. Beals, D. Sattinger and J. Szmigielski, Accoustic scattering and the extended KdV hierachy, Adv. Math., 140 (1998), 190-206. doi: doi: 10.1005/aima.1998.1768.

[6]

A Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschi, Long-time asymptotics for teh Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588. doi: doi: 10.1137/090748500.

[7]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: doi: 10.1103/PhysRevLett.71.1661.

[8]

M. Chen, S.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15; nlin.SI/0501028.

[9]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, International Mathematics Research Notices, Article ID rnq118 (2010), 36 pages. doi: doi10.1093/imrn/rnq118.

[10]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shalow water equation, Acta. Math., 181 (1998), 229-243. doi: doi: 10.1007/BF02392586.

[11]

A. Constantin, V. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa -Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: doi: 10.1088/0266-5611/22/6/017.

[12]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: doi: 10.1016/j.physleta.2008.10.050.

[13]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam Res., 40 (2008), 175-211.

[14]

A. Constantin and D. Lannes, The hydro-dynamical relevance of teh Camassa-Holm and Degasperis-Proceisi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Commun. Pure Appl. Math., 52 (1999), 949-982.

[16]

A. Constantin and W. Strauss, Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270 (200), 140-148.

[17]

H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta. Math., 127 (1998), 193-207.

[18]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.

[19]

J. Escher and Z. Yin, Well-posedness, blow-up phenomena and global solutions for the b-equation, J. Reine Angew. Math., 624 (2008), 51-80. doi: doi: 10.1515/CRELLE.2008.080.

[20]

G. Falqui, On a Camassa-Holm type equation with two dependent variables, J. Phys. A, 39 (2006), 327-342. doi: doi: 10.1088/0305-4470/39/2/004.

[21]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278. doi: doi: 10.1016/j.jfa.2010.02.008.

[22]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009) 597-606. doi: doi: 10.3934/dcdsb.2009.12.597.

[23]

D. D. Holm and C. Tronci, Geodesic Vlasov equations and their integrable moment closures, J. Geom. Mech., 1 (2009), 181-208.

[24]

D. D. Holm and R. I. Ivanov, Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems, 27 (2011), 045013. doi: doi: 10.1088/0266-5611/27/4/045013.

[25]

R. I. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Z. Naturforsch., 61a (2006), 133-138; nlin.SI/0601066.

[26]

R. I. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396.

[27]

R. S. Johnson, Camassa-Holm, Kortweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82. doi: doi: 10.1017/S0022112001007224.

[28]

J. Keener and J. Sneyd, "Mathematical Physiology 1: Cellular Physiology," Springer, 2009.

[29]

Y. Kodama and B. Konopelchenko, Singular sector of the Burgers-Hopf hierarchy and deformations of hyperelliptic curves, J. Phys. A: Math. Gen., 35 (2002), L489-L500.

[30]

J. Lighthill, "Mathematical Biofluiddynamics," SIAM, Philadelphia, PA. 1975.

[31]

S.-Q. Liu and Y. Zhang, Deformations of semisimple bi-Hamiltonian structures of hydrodynamic type, J. Geom. Phys., 54 (2005), 427-53. doi: 10.1088/0305-4470/35/31/104.

[32]

P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906. doi: 10.1103/PhysRevE.53.1900.

[33]

T. J. Pedley, Blood flow in arteries and veins, in "Perspectives in Fluid Dynamics," Cambridge University Press, 2003.

[34]

W. A. Strauss, "Partial Differential Equations: An Introduction," John Wiley & Sons Inc., 1990.

[35]

G. B Whitham, "Linear and Nonlinear Waves," John Wiley & Sons, New York, 1980.

[1]

Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[2]

Angelo Morro. Nonlinear waves in thermoelastic dielectrics. Evolution Equations and Control Theory, 2019, 8 (1) : 149-162. doi: 10.3934/eect.2019009

[3]

Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3235-3258. doi: 10.3934/cpaa.2021104

[4]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[5]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[6]

Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations and Control Theory, 2016, 5 (3) : 367-381. doi: 10.3934/eect.2016009

[7]

Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161

[8]

Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108

[9]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[10]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[11]

Anna Geyer, Ronald Quirchmayr. Weakly nonlinear waves in stratified shear flows. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2309-2325. doi: 10.3934/cpaa.2022061

[12]

David Henry. Energy considerations for nonlinear equatorial water waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2337-2356. doi: 10.3934/cpaa.2022057

[13]

Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793

[14]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[15]

Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933

[16]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

[17]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[18]

Wenzhang Huang. Weakly coupled traveling waves for a model of growth and competition in a flow reactor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 79-87. doi: 10.3934/mbe.2006.3.79

[19]

Bogdan-Vasile Matioc. A characterization of the symmetric steady water waves in terms of the underlying flow. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3125-3133. doi: 10.3934/dcds.2014.34.3125

[20]

Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]