Advanced Search
Article Contents
Article Contents

On the symmetry of steady periodic water waves with stagnation points

Abstract Related Papers Cited by
  • The aim of this paper is to prove the symmetry of small-amplitude steady periodic water waves with monotonic wave profile even if stagnation points occur in the flow beneath the wave.
    Mathematics Subject Classification: Primary: 76B15; Secondary: 35J25.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.


    A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train, Eur. J. Mech. B Fluids, 30 (2011), 12-16.doi: 10.1016/j.euromechflu.2010.09.008.


    A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, Journal of Fluid Mechanics, 498 (2004), 171-181.doi: 10.1017/S0022112003006773.


    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.


    A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.doi: 10.1215/S0012-7094-07-14034-1.


    A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Communications on Pure and Applied Mathematics, 57 (2004), 481-507.doi: 10.1002/cpa.3046.


    A. Constantin and W. Strauss, Rotational steady water waves near stagnation, Philos. Trans. Roy. Soc. London A, 365 (2004), 2227-2239.doi: 10.1098/rsta.2007.2004.


    A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Communications on Pure and Applied Mathematics, 63 (2010), 533-557.doi: 10.1002/cpa.20299.


    A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: regularity and local bifurcation, Archive for Rational Mechanics and Analysis, 199 (2011), 33-67.doi: 10.1007/s00205-010-0314-x.


    L. E. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems," Cambridge University Press, 2000.doi: 10.1017/CBO9780511569203.


    B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Communications in Mathematical Physics, 68 (1979), 209-283.doi: 10.1007/BF01221125.


    R. S. Johnson, "A Modern Introduction to the Mathematical Theory of Water Waves," Cambridge University Press, Cambridge, 1997.doi: 10.2277/052159832X.


    J. Lighthill, "Waves in Fluids," 2$nd$ edition, Cambridge University Press, 2001.doi: 10.2277/0521010454.


    H. Okamoto and M. Shoji, "The Mathematical Theory of Permanent Progressive Water-waves," World Scientific, River Edge, N.J., 2001.doi: 10.1017/S0022112002002951.


    J. Serrin, A symmetry problem in potential theory, Archive for Rational Mechanics and Analysis, 43 (1971), 304-318.doi: 10.1007/BF00250468.


    A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech., 195 (1988), 281-302.doi: 10.1017/S0022112088002423.


    J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.


    E. Varvaruca, Some geometric and analytic properties of solutions of Bernoulli free-boundary problems, Interfaces Free Bound., 9 (2007), 367-381.doi: 10.4171/IFB/169.


    E. Varvaruca, On some properties of traveling water waves with vorticity, SIAM J. Math. Anal., 39 (2008), 1686-1692.doi: 10.1137/070697513.


    E. Wahlén, Steady water waves with a critical layer, Journal of Differential Equations, 246 (2009), 2468-2483.doi: 10.1016/j.jde.2008.10.005.

  • 加载中

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint