September  2012, 11(5): 1615-1628. doi: 10.3934/cpaa.2012.11.1615

Positive solutions of a fourth-order boundary value problem involving derivatives of all orders

1. 

Department of Mathematics, Qingdao Technological University, No 11 Fushun Road, Qingdao, Shandong Province, China

2. 

Department of Mathematics, Xuzhou Normal University, Xuzhou 221116

Received  May 2010 Revised  December 2011 Published  March 2012

This paper is mainly concerned with the existence, multiplicity and uniqueness of positive solutions for the fourth-order boundary value problem \begin{eqnarray*} u^{(4)}=f(t,u,u^\prime,-u^{\prime\prime},-u^{\prime\prime\prime}),\\ u(0)=u^\prime(1)=u^{\prime\prime}(0)=u^{\prime\prime\prime}(1)=0, \end{eqnarray*} where $f\in C([0,1]\times\mathbb R_+^4,\mathbb R_+)(\mathbb R_+:=[0,\infty))$. Based on a priori estimates achieved by utilizing some integral identities and inequalities, we use fixed point index theory to prove the existence, multiplicity and uniqueness of positive solutions for the above problem. Finally, as a byproduct, our main results are applied to establish the existence, multiplicity and uniqueness of symmetric positive solutions for the fourth order Lidstone problem.
Citation: Zhilin Yang, Jingxian Sun. Positive solutions of a fourth-order boundary value problem involving derivatives of all orders. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1615-1628. doi: 10.3934/cpaa.2012.11.1615
References:
[1]

A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems,, J. Math. Anal. Appl., 116 (1986), 415.  doi: 10.1016/S0022-247X(86)80006-3.  Google Scholar

[2]

R. P. Agarwal, On fourth-order boundary value problems arising in beam analysis,, Differential Integral Equations, 2 (1989), 91.   Google Scholar

[3]

R. P. Agarwal and G. Akrivis, Boundary value problems occurring in plate deflection theory,, J. Comput. Appl. Math., 8 (1982), 145.  doi: 10.1016/0771-050X(82)90035-3.  Google Scholar

[4]

R. P. Agarwal and P. J. Y. Wong, Lidstone polynomials and boundary value problems,, Comput. Math. Appl., 17 (1989), 1397.  doi: 10.1016/0898-1221(89)90023-0.  Google Scholar

[5]

R. P. Agarwal, D. O'Regan and S. Staněk, Singular Lidstone boundary value problem with given maximal values for solutions,, Nonlinear Anal., 55 (2003), 859.  doi: 10.1016/j.na.2003.06.001.  Google Scholar

[6]

Z. Bai and W. Ge, Solutions of $2n$th Lidstone boundary value problems and dependence on higher order derivatives,, J. Math. Anal. Appl., 279 (2003), 442.  doi: 10.1016/S0022-247X(03)00011-8.  Google Scholar

[7]

S. N. Bernstein, Sur les équations du calcul des variations,, Ann. Sci. Ecole Norm. Sup., 29 (1912), 431.   Google Scholar

[8]

J. M. Davis, P. W. Eloe and J. Henderson, Triple positive solutions and dependence on higher order derivatives,, J. Math. Anal. Appl., 237 (1999), 710.  doi: 10.1006/jmaa.1999.6500.  Google Scholar

[9]

C. De Coster, C. Fabry and F. Munyamarere, Nonresonance conditions for fourth-order nonlinear boundary value problems,, Int. J. Math. Math. Sci., 17 (1994), 725.  doi: 10.1155/S0161171294001031.  Google Scholar

[10]

M. A. Del Pino and R. F. Manasevich, Existence for a fourth-order nonlinear boundary problem under a twoparameter nonresonance condition,, Proc. Amer. Math. Soc., 112 (1991), 81.  doi: 10.1090/S0002-9939-1991-1043407-9.  Google Scholar

[11]

J. Ehme and J. Henderson, Existence and local uniqueness for nonlinear Lidstone boundary value problems,, J. Inequal. Pure Appl. Math., 1 (2000), 1.   Google Scholar

[12]

P. W. Eloe, Nonlinear eigenvalue problems for higher order Lidstone boundary value problems,, J. Qual. Theory Differ. Equ., 2 (2000), 1.   Google Scholar

[13]

D. Guo and V. Lakshmikantham, "Nonlinear Problems in Abstract Cones,", Academic Press, (1988).   Google Scholar

[14]

H. Feng, D. Ji and W. Ge, Existence and uniqueness of solutions for a fourth-order boundary value problem,, Nonlinear Anal., 70 (2009), 3561.  doi: 10.1016/j.na.2008.07.013.  Google Scholar

[15]

F. Li and Z. Liu, Multiple positive solutions of some nonlinear operator equations and their applications,, Acta Math. Sinica (Chin. Ser.), 41 (1998), 97.   Google Scholar

[16]

Z. Liu and F. Li, Multiple positive solutions of nonlinear two-point value problems,, J. Math. Anal. Appl., 203 (1996), 610.  doi: 10.1006/jmaa.1996.0400.  Google Scholar

[17]

Y. Ma, Existence of positive solutions of Lidstone boundary value problems,, J. Math. Anal. Appl., 314 (2006), 97.  doi: 10.1016/j.jmaa.2005.03.059.  Google Scholar

[18]

M. Nagumo, $\ddotU$ber die Differentialgleichung $y''=f(t,y,y')$,, Proc. Phys. Math. Soc. Japan, 19 (1937), 861.   Google Scholar

[19]

Y. Wang, On $2n$th-order Lidstone boundary value problems,, J. Math. Anal. Appl., 312 (2005), 383.  doi: 10.1016/j.jmaa.2005.03.039.  Google Scholar

[20]

Y. Wang, On fourth-order elliptic boundary value problems with nonmonotone nonlinear function,, J. Math. Anal. Appl., 307 (2005), 1.  doi: 10.1016/j.jmaa.2004.09.063.  Google Scholar

[21]

Z. Wei, Existence of positive solutions for $2n$th-order singular sublinear boundary value problems,, J. Math. Anal. Appl., 306 (2005), 619.  doi: 10.1016/j.jmaa.2004.10.037.  Google Scholar

[22]

Z. Wei, Positive solutions for $2n$th-order singular sub-linear $m$-point boundary value problems,, Appl. Math. Comput., 182 (2006), 1280.  doi: 10.1016/j.amc.2006.05.014.  Google Scholar

[23]

Z. Wei, A necessary and sufficient condition for $2n$th-order singular superlinear $m$-point boundary value problems,, J. Math. Anal. Appl., 327 (2007), 930.  doi: 10.1016/j.jmaa.2006.04.056.  Google Scholar

[24]

Z. Yang, Existence and uniqueness of psoitive solutions for a higher order boundary value problem,, Comput. Math. Appl., 54 (2007), 220.  doi: 10.1016/j.camwa.2007.01.018.  Google Scholar

[25]

Z. Yang, D. O'Regan and R. P. Agarwal, Positive solutions of a second-order boundary value problem via integro-differential quation arguments,, Appl. Anal., 88 (2009), 1197.  doi: 10.1080/00036810903157212.  Google Scholar

[26]

Q. Yao, Existence of $n$ positive solutions to general Lidstone boundary value problems,, Acta Math. Sinica (Chin. Ser.), 48 (2005), 365.   Google Scholar

[27]

B. Zhang and X. Liu, Existence of multiple symmetric positive solutions of higher order Lidstone problems,, J. Math. Anal. Appl., 284 (2003), 672.  doi: 10.1016/S0022-247X(03)00386-X.  Google Scholar

show all references

References:
[1]

A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems,, J. Math. Anal. Appl., 116 (1986), 415.  doi: 10.1016/S0022-247X(86)80006-3.  Google Scholar

[2]

R. P. Agarwal, On fourth-order boundary value problems arising in beam analysis,, Differential Integral Equations, 2 (1989), 91.   Google Scholar

[3]

R. P. Agarwal and G. Akrivis, Boundary value problems occurring in plate deflection theory,, J. Comput. Appl. Math., 8 (1982), 145.  doi: 10.1016/0771-050X(82)90035-3.  Google Scholar

[4]

R. P. Agarwal and P. J. Y. Wong, Lidstone polynomials and boundary value problems,, Comput. Math. Appl., 17 (1989), 1397.  doi: 10.1016/0898-1221(89)90023-0.  Google Scholar

[5]

R. P. Agarwal, D. O'Regan and S. Staněk, Singular Lidstone boundary value problem with given maximal values for solutions,, Nonlinear Anal., 55 (2003), 859.  doi: 10.1016/j.na.2003.06.001.  Google Scholar

[6]

Z. Bai and W. Ge, Solutions of $2n$th Lidstone boundary value problems and dependence on higher order derivatives,, J. Math. Anal. Appl., 279 (2003), 442.  doi: 10.1016/S0022-247X(03)00011-8.  Google Scholar

[7]

S. N. Bernstein, Sur les équations du calcul des variations,, Ann. Sci. Ecole Norm. Sup., 29 (1912), 431.   Google Scholar

[8]

J. M. Davis, P. W. Eloe and J. Henderson, Triple positive solutions and dependence on higher order derivatives,, J. Math. Anal. Appl., 237 (1999), 710.  doi: 10.1006/jmaa.1999.6500.  Google Scholar

[9]

C. De Coster, C. Fabry and F. Munyamarere, Nonresonance conditions for fourth-order nonlinear boundary value problems,, Int. J. Math. Math. Sci., 17 (1994), 725.  doi: 10.1155/S0161171294001031.  Google Scholar

[10]

M. A. Del Pino and R. F. Manasevich, Existence for a fourth-order nonlinear boundary problem under a twoparameter nonresonance condition,, Proc. Amer. Math. Soc., 112 (1991), 81.  doi: 10.1090/S0002-9939-1991-1043407-9.  Google Scholar

[11]

J. Ehme and J. Henderson, Existence and local uniqueness for nonlinear Lidstone boundary value problems,, J. Inequal. Pure Appl. Math., 1 (2000), 1.   Google Scholar

[12]

P. W. Eloe, Nonlinear eigenvalue problems for higher order Lidstone boundary value problems,, J. Qual. Theory Differ. Equ., 2 (2000), 1.   Google Scholar

[13]

D. Guo and V. Lakshmikantham, "Nonlinear Problems in Abstract Cones,", Academic Press, (1988).   Google Scholar

[14]

H. Feng, D. Ji and W. Ge, Existence and uniqueness of solutions for a fourth-order boundary value problem,, Nonlinear Anal., 70 (2009), 3561.  doi: 10.1016/j.na.2008.07.013.  Google Scholar

[15]

F. Li and Z. Liu, Multiple positive solutions of some nonlinear operator equations and their applications,, Acta Math. Sinica (Chin. Ser.), 41 (1998), 97.   Google Scholar

[16]

Z. Liu and F. Li, Multiple positive solutions of nonlinear two-point value problems,, J. Math. Anal. Appl., 203 (1996), 610.  doi: 10.1006/jmaa.1996.0400.  Google Scholar

[17]

Y. Ma, Existence of positive solutions of Lidstone boundary value problems,, J. Math. Anal. Appl., 314 (2006), 97.  doi: 10.1016/j.jmaa.2005.03.059.  Google Scholar

[18]

M. Nagumo, $\ddotU$ber die Differentialgleichung $y''=f(t,y,y')$,, Proc. Phys. Math. Soc. Japan, 19 (1937), 861.   Google Scholar

[19]

Y. Wang, On $2n$th-order Lidstone boundary value problems,, J. Math. Anal. Appl., 312 (2005), 383.  doi: 10.1016/j.jmaa.2005.03.039.  Google Scholar

[20]

Y. Wang, On fourth-order elliptic boundary value problems with nonmonotone nonlinear function,, J. Math. Anal. Appl., 307 (2005), 1.  doi: 10.1016/j.jmaa.2004.09.063.  Google Scholar

[21]

Z. Wei, Existence of positive solutions for $2n$th-order singular sublinear boundary value problems,, J. Math. Anal. Appl., 306 (2005), 619.  doi: 10.1016/j.jmaa.2004.10.037.  Google Scholar

[22]

Z. Wei, Positive solutions for $2n$th-order singular sub-linear $m$-point boundary value problems,, Appl. Math. Comput., 182 (2006), 1280.  doi: 10.1016/j.amc.2006.05.014.  Google Scholar

[23]

Z. Wei, A necessary and sufficient condition for $2n$th-order singular superlinear $m$-point boundary value problems,, J. Math. Anal. Appl., 327 (2007), 930.  doi: 10.1016/j.jmaa.2006.04.056.  Google Scholar

[24]

Z. Yang, Existence and uniqueness of psoitive solutions for a higher order boundary value problem,, Comput. Math. Appl., 54 (2007), 220.  doi: 10.1016/j.camwa.2007.01.018.  Google Scholar

[25]

Z. Yang, D. O'Regan and R. P. Agarwal, Positive solutions of a second-order boundary value problem via integro-differential quation arguments,, Appl. Anal., 88 (2009), 1197.  doi: 10.1080/00036810903157212.  Google Scholar

[26]

Q. Yao, Existence of $n$ positive solutions to general Lidstone boundary value problems,, Acta Math. Sinica (Chin. Ser.), 48 (2005), 365.   Google Scholar

[27]

B. Zhang and X. Liu, Existence of multiple symmetric positive solutions of higher order Lidstone problems,, J. Math. Anal. Appl., 284 (2003), 672.  doi: 10.1016/S0022-247X(03)00386-X.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[3]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[6]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[7]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[10]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[11]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[12]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[13]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[16]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[17]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[18]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[19]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[20]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]