-
Previous Article
Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions
- CPAA Home
- This Issue
-
Next Article
Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations
Positive solutions of a fourth-order boundary value problem involving derivatives of all orders
1. | Department of Mathematics, Qingdao Technological University, No 11 Fushun Road, Qingdao, Shandong Province, China |
2. | Department of Mathematics, Xuzhou Normal University, Xuzhou 221116 |
References:
[1] |
A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems,, J. Math. Anal. Appl., 116 (1986), 415.
doi: 10.1016/S0022-247X(86)80006-3. |
[2] |
R. P. Agarwal, On fourth-order boundary value problems arising in beam analysis,, Differential Integral Equations, 2 (1989), 91.
|
[3] |
R. P. Agarwal and G. Akrivis, Boundary value problems occurring in plate deflection theory,, J. Comput. Appl. Math., 8 (1982), 145.
doi: 10.1016/0771-050X(82)90035-3. |
[4] |
R. P. Agarwal and P. J. Y. Wong, Lidstone polynomials and boundary value problems,, Comput. Math. Appl., 17 (1989), 1397.
doi: 10.1016/0898-1221(89)90023-0. |
[5] |
R. P. Agarwal, D. O'Regan and S. Staněk, Singular Lidstone boundary value problem with given maximal values for solutions,, Nonlinear Anal., 55 (2003), 859.
doi: 10.1016/j.na.2003.06.001. |
[6] |
Z. Bai and W. Ge, Solutions of $2n$th Lidstone boundary value problems and dependence on higher order derivatives,, J. Math. Anal. Appl., 279 (2003), 442.
doi: 10.1016/S0022-247X(03)00011-8. |
[7] |
S. N. Bernstein, Sur les équations du calcul des variations,, Ann. Sci. Ecole Norm. Sup., 29 (1912), 431. Google Scholar |
[8] |
J. M. Davis, P. W. Eloe and J. Henderson, Triple positive solutions and dependence on higher order derivatives,, J. Math. Anal. Appl., 237 (1999), 710.
doi: 10.1006/jmaa.1999.6500. |
[9] |
C. De Coster, C. Fabry and F. Munyamarere, Nonresonance conditions for fourth-order nonlinear boundary value problems,, Int. J. Math. Math. Sci., 17 (1994), 725.
doi: 10.1155/S0161171294001031. |
[10] |
M. A. Del Pino and R. F. Manasevich, Existence for a fourth-order nonlinear boundary problem under a twoparameter nonresonance condition,, Proc. Amer. Math. Soc., 112 (1991), 81.
doi: 10.1090/S0002-9939-1991-1043407-9. |
[11] |
J. Ehme and J. Henderson, Existence and local uniqueness for nonlinear Lidstone boundary value problems,, J. Inequal. Pure Appl. Math., 1 (2000), 1.
|
[12] |
P. W. Eloe, Nonlinear eigenvalue problems for higher order Lidstone boundary value problems,, J. Qual. Theory Differ. Equ., 2 (2000), 1.
|
[13] |
D. Guo and V. Lakshmikantham, "Nonlinear Problems in Abstract Cones,", Academic Press, (1988).
|
[14] |
H. Feng, D. Ji and W. Ge, Existence and uniqueness of solutions for a fourth-order boundary value problem,, Nonlinear Anal., 70 (2009), 3561.
doi: 10.1016/j.na.2008.07.013. |
[15] |
F. Li and Z. Liu, Multiple positive solutions of some nonlinear operator equations and their applications,, Acta Math. Sinica (Chin. Ser.), 41 (1998), 97.
|
[16] |
Z. Liu and F. Li, Multiple positive solutions of nonlinear two-point value problems,, J. Math. Anal. Appl., 203 (1996), 610.
doi: 10.1006/jmaa.1996.0400. |
[17] |
Y. Ma, Existence of positive solutions of Lidstone boundary value problems,, J. Math. Anal. Appl., 314 (2006), 97.
doi: 10.1016/j.jmaa.2005.03.059. |
[18] |
M. Nagumo, $\ddotU$ber die Differentialgleichung $y''=f(t,y,y')$,, Proc. Phys. Math. Soc. Japan, 19 (1937), 861. Google Scholar |
[19] |
Y. Wang, On $2n$th-order Lidstone boundary value problems,, J. Math. Anal. Appl., 312 (2005), 383.
doi: 10.1016/j.jmaa.2005.03.039. |
[20] |
Y. Wang, On fourth-order elliptic boundary value problems with nonmonotone nonlinear function,, J. Math. Anal. Appl., 307 (2005), 1.
doi: 10.1016/j.jmaa.2004.09.063. |
[21] |
Z. Wei, Existence of positive solutions for $2n$th-order singular sublinear boundary value problems,, J. Math. Anal. Appl., 306 (2005), 619.
doi: 10.1016/j.jmaa.2004.10.037. |
[22] |
Z. Wei, Positive solutions for $2n$th-order singular sub-linear $m$-point boundary value problems,, Appl. Math. Comput., 182 (2006), 1280.
doi: 10.1016/j.amc.2006.05.014. |
[23] |
Z. Wei, A necessary and sufficient condition for $2n$th-order singular superlinear $m$-point boundary value problems,, J. Math. Anal. Appl., 327 (2007), 930.
doi: 10.1016/j.jmaa.2006.04.056. |
[24] |
Z. Yang, Existence and uniqueness of psoitive solutions for a higher order boundary value problem,, Comput. Math. Appl., 54 (2007), 220.
doi: 10.1016/j.camwa.2007.01.018. |
[25] |
Z. Yang, D. O'Regan and R. P. Agarwal, Positive solutions of a second-order boundary value problem via integro-differential quation arguments,, Appl. Anal., 88 (2009), 1197.
doi: 10.1080/00036810903157212. |
[26] |
Q. Yao, Existence of $n$ positive solutions to general Lidstone boundary value problems,, Acta Math. Sinica (Chin. Ser.), 48 (2005), 365.
|
[27] |
B. Zhang and X. Liu, Existence of multiple symmetric positive solutions of higher order Lidstone problems,, J. Math. Anal. Appl., 284 (2003), 672.
doi: 10.1016/S0022-247X(03)00386-X. |
show all references
References:
[1] |
A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems,, J. Math. Anal. Appl., 116 (1986), 415.
doi: 10.1016/S0022-247X(86)80006-3. |
[2] |
R. P. Agarwal, On fourth-order boundary value problems arising in beam analysis,, Differential Integral Equations, 2 (1989), 91.
|
[3] |
R. P. Agarwal and G. Akrivis, Boundary value problems occurring in plate deflection theory,, J. Comput. Appl. Math., 8 (1982), 145.
doi: 10.1016/0771-050X(82)90035-3. |
[4] |
R. P. Agarwal and P. J. Y. Wong, Lidstone polynomials and boundary value problems,, Comput. Math. Appl., 17 (1989), 1397.
doi: 10.1016/0898-1221(89)90023-0. |
[5] |
R. P. Agarwal, D. O'Regan and S. Staněk, Singular Lidstone boundary value problem with given maximal values for solutions,, Nonlinear Anal., 55 (2003), 859.
doi: 10.1016/j.na.2003.06.001. |
[6] |
Z. Bai and W. Ge, Solutions of $2n$th Lidstone boundary value problems and dependence on higher order derivatives,, J. Math. Anal. Appl., 279 (2003), 442.
doi: 10.1016/S0022-247X(03)00011-8. |
[7] |
S. N. Bernstein, Sur les équations du calcul des variations,, Ann. Sci. Ecole Norm. Sup., 29 (1912), 431. Google Scholar |
[8] |
J. M. Davis, P. W. Eloe and J. Henderson, Triple positive solutions and dependence on higher order derivatives,, J. Math. Anal. Appl., 237 (1999), 710.
doi: 10.1006/jmaa.1999.6500. |
[9] |
C. De Coster, C. Fabry and F. Munyamarere, Nonresonance conditions for fourth-order nonlinear boundary value problems,, Int. J. Math. Math. Sci., 17 (1994), 725.
doi: 10.1155/S0161171294001031. |
[10] |
M. A. Del Pino and R. F. Manasevich, Existence for a fourth-order nonlinear boundary problem under a twoparameter nonresonance condition,, Proc. Amer. Math. Soc., 112 (1991), 81.
doi: 10.1090/S0002-9939-1991-1043407-9. |
[11] |
J. Ehme and J. Henderson, Existence and local uniqueness for nonlinear Lidstone boundary value problems,, J. Inequal. Pure Appl. Math., 1 (2000), 1.
|
[12] |
P. W. Eloe, Nonlinear eigenvalue problems for higher order Lidstone boundary value problems,, J. Qual. Theory Differ. Equ., 2 (2000), 1.
|
[13] |
D. Guo and V. Lakshmikantham, "Nonlinear Problems in Abstract Cones,", Academic Press, (1988).
|
[14] |
H. Feng, D. Ji and W. Ge, Existence and uniqueness of solutions for a fourth-order boundary value problem,, Nonlinear Anal., 70 (2009), 3561.
doi: 10.1016/j.na.2008.07.013. |
[15] |
F. Li and Z. Liu, Multiple positive solutions of some nonlinear operator equations and their applications,, Acta Math. Sinica (Chin. Ser.), 41 (1998), 97.
|
[16] |
Z. Liu and F. Li, Multiple positive solutions of nonlinear two-point value problems,, J. Math. Anal. Appl., 203 (1996), 610.
doi: 10.1006/jmaa.1996.0400. |
[17] |
Y. Ma, Existence of positive solutions of Lidstone boundary value problems,, J. Math. Anal. Appl., 314 (2006), 97.
doi: 10.1016/j.jmaa.2005.03.059. |
[18] |
M. Nagumo, $\ddotU$ber die Differentialgleichung $y''=f(t,y,y')$,, Proc. Phys. Math. Soc. Japan, 19 (1937), 861. Google Scholar |
[19] |
Y. Wang, On $2n$th-order Lidstone boundary value problems,, J. Math. Anal. Appl., 312 (2005), 383.
doi: 10.1016/j.jmaa.2005.03.039. |
[20] |
Y. Wang, On fourth-order elliptic boundary value problems with nonmonotone nonlinear function,, J. Math. Anal. Appl., 307 (2005), 1.
doi: 10.1016/j.jmaa.2004.09.063. |
[21] |
Z. Wei, Existence of positive solutions for $2n$th-order singular sublinear boundary value problems,, J. Math. Anal. Appl., 306 (2005), 619.
doi: 10.1016/j.jmaa.2004.10.037. |
[22] |
Z. Wei, Positive solutions for $2n$th-order singular sub-linear $m$-point boundary value problems,, Appl. Math. Comput., 182 (2006), 1280.
doi: 10.1016/j.amc.2006.05.014. |
[23] |
Z. Wei, A necessary and sufficient condition for $2n$th-order singular superlinear $m$-point boundary value problems,, J. Math. Anal. Appl., 327 (2007), 930.
doi: 10.1016/j.jmaa.2006.04.056. |
[24] |
Z. Yang, Existence and uniqueness of psoitive solutions for a higher order boundary value problem,, Comput. Math. Appl., 54 (2007), 220.
doi: 10.1016/j.camwa.2007.01.018. |
[25] |
Z. Yang, D. O'Regan and R. P. Agarwal, Positive solutions of a second-order boundary value problem via integro-differential quation arguments,, Appl. Anal., 88 (2009), 1197.
doi: 10.1080/00036810903157212. |
[26] |
Q. Yao, Existence of $n$ positive solutions to general Lidstone boundary value problems,, Acta Math. Sinica (Chin. Ser.), 48 (2005), 365.
|
[27] |
B. Zhang and X. Liu, Existence of multiple symmetric positive solutions of higher order Lidstone problems,, J. Math. Anal. Appl., 284 (2003), 672.
doi: 10.1016/S0022-247X(03)00386-X. |
[1] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[2] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[3] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[4] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[5] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[6] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[7] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[8] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[9] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[10] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[11] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[12] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[13] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[14] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[15] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[16] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[17] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[18] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[19] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[20] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]