-
Previous Article
Regularizing rate estimates for mild solutions of the incompressible Magneto-hydrodynamic system
- CPAA Home
- This Issue
-
Next Article
Positive solutions of a fourth-order boundary value problem involving derivatives of all orders
Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions
1. | Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina |
2. | Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Airess, Argentina, Argentina |
References:
[1] |
J. F. Bonder and J. Dolbeault, work in progress, work in progress., ().
|
[2] |
L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275. |
[3] |
F. Catrina and Z-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.
doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. |
[4] |
P. L. De Nápoli, I. Drelichman and R. G. Durán, On weighted inequalities for fractional integrals of radial functions,, To appear in Illinois J. Math. \arXiv{0910.5508}., ().
|
[5] |
L. Grafakos, "Classical and Modern Fourier Analysis," Pearson Education, Inc., Upper Saddle River, NJ, 2004. |
[6] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[7] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970. |
[8] |
E. M. Stein and G. Weiss, Fractional integrals on $n$-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. |
show all references
References:
[1] |
J. F. Bonder and J. Dolbeault, work in progress, work in progress., ().
|
[2] |
L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275. |
[3] |
F. Catrina and Z-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.
doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. |
[4] |
P. L. De Nápoli, I. Drelichman and R. G. Durán, On weighted inequalities for fractional integrals of radial functions,, To appear in Illinois J. Math. \arXiv{0910.5508}., ().
|
[5] |
L. Grafakos, "Classical and Modern Fourier Analysis," Pearson Education, Inc., Upper Saddle River, NJ, 2004. |
[6] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[7] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970. |
[8] |
E. M. Stein and G. Weiss, Fractional integrals on $n$-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. |
[1] |
Mayte Pérez-Llanos. Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure and Applied Analysis, 2016, 15 (6) : 1975-2005. doi: 10.3934/cpaa.2016024 |
[2] |
B. Abdellaoui, I. Peral. On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure and Applied Analysis, 2003, 2 (4) : 539-566. doi: 10.3934/cpaa.2003.2.539 |
[3] |
Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic and Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002 |
[4] |
Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697 |
[5] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1721-1735. doi: 10.3934/cpaa.2021038 |
[6] |
Maria J. Esteban. Gagliardo-Nirenberg-Sobolev inequalities on planar graphs. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2101-2114. doi: 10.3934/cpaa.2022051 |
[7] |
Muhammad Aslam Noor, Khalida Inayat Noor. General biconvex functions and bivariational inequalities. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021041 |
[8] |
Pradeep Boggarapu, Luz Roncal, Sundaram Thangavelu. On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2575-2605. doi: 10.3934/cpaa.2019116 |
[9] |
Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure and Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373 |
[10] |
Yu-Lin Chang, Chin-Yu Yang. Some useful inequalities via trace function method in Euclidean Jordan algebras. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 39-48. doi: 10.3934/naco.2014.4.39 |
[11] |
Antonio Cañada, Salvador Villegas. Lyapunov inequalities for partial differential equations at radial higher eigenvalues. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 111-122. doi: 10.3934/dcds.2013.33.111 |
[12] |
Gabriele Grillo, Matteo Muratori, Maria Michaela Porzio. Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3599-3640. doi: 10.3934/dcds.2013.33.3599 |
[13] |
Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683 |
[14] |
Minghua Li, Chunrong Chen, Shengjie Li. Error bounds of regularized gap functions for nonmonotone Ky Fan inequalities. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1261-1272. doi: 10.3934/jimo.2019001 |
[15] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure and Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296 |
[16] |
Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008 |
[17] |
Vy Khoi Le. Existence and enclosure of solutions to noncoercive systems of inequalities with multivalued mappings and non-power growths. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 255-276. doi: 10.3934/dcds.2013.33.255 |
[18] |
Haoyue Song, Fanwei Meng. Some generalizations of delay integral inequalities of Gronwall-Bellman type with power and their applications. Mathematical Foundations of Computing, 2022, 5 (1) : 45-55. doi: 10.3934/mfc.2021022 |
[19] |
Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control and Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365 |
[20] |
Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]