-
Previous Article
A class of large amplitude oscillating solutions for three dimensional Euler equations
- CPAA Home
- This Issue
-
Next Article
Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions
Regularizing rate estimates for mild solutions of the incompressible Magneto-hydrodynamic system
1. | Department of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China |
2. | Department of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275 |
References:
[1] |
J. Bergh and J. Löfström, "Interpolation Spaces, An Introduction," Springer-Verlag, New York, 1976. |
[2] |
M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Revista Matemática Iberoamericana, 13 (1997), 515-541. |
[3] |
M. Cannone, C. X. Miao, N. Prioux and B. Q. Yuan, The Cauchy problem for the Magneto-hydrodynamic system, self-similar solutions of nonlinear PDE, Banach Center Publications, Institue of Mathematics, Polish Academy of Scuences, Warszawa, 74 (2006), 59-93. |
[4] |
C. Cao and J. Wu, Two regularity criteria for the 3D MHD equation, J. Differential Equations, 248 (2010), 2263-2274.
doi: 10.1016/j.jde.2009.09.020. |
[5] |
S. Cui and C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(R^n)$ and applications, Nonlinear Analysis, 67 (2007), 687-707.
doi: 10.1016/j.na.2006.06.020. |
[6] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archive for Rational Mechanics and Analysis, 16 (1964), 269-315.
doi: 10.1007/BF00276188. |
[7] |
Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212. |
[8] |
Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier Stokes equations with nondecaying initial data, Quaderni di Matematica, 3 (1999), 28-68. |
[9] |
Y. Giga and T. Miyakwa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Archive for Rational Mechanics and Analysis, 89 (1985), 267-281.
doi: 10.1007/BF00276875. |
[10] |
Y. Giga and O. Sawada, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear Anal. Real World Appl., 1 (2003), 549-562. |
[11] |
C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 33 (1969), 386-405.
doi: 10.1007/BF00247697. |
[12] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbf{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.
doi: 10.1007/BF01174182. |
[13] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[14] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Kortweg-de Vries equation via contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[15] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[16] |
H. Kozono and M. Yamazaki, Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data, Comm. Part. Diff. Equ., 19 (1994), 959-1014.
doi: 10.1080/03605309408821042. |
[17] |
P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Chapman and Hall/CRC, 2002. |
[18] |
Y. Meyer, Wavelets, paraproducts and Navier-Stokes equations, in "Current Developments in Mathematics (1996)," Cambridge, MA, Int. Press, Boston, MA, (1997), 105-212. |
[19] |
C. Miao, B. Yuan and B. Zhang, Well-posedness for the incompressible magneto-hydrodynamic system, Math. Meth. Appl. Sci., 30 (2007), 961-976.
doi: 10.1002/mma.820. |
[20] |
C. Miao and B. Yuan, On well-posedness of the Cauchy problem for MHD system in Besov spaces, Math. Meth. Appl. Sci., 32 (2009), 53-76.
doi: 10.1002/mma.1026. |
[21] |
H. Miura and O. Sawada, On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations, Asymptotic Analysis, 49 (2006), 1-15. |
[22] |
M. Sermang and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.
doi: 10.1002/cpa.3160360506. |
[23] |
O. Sawada, On analyticity rate estimates of the solutions to the Navier-Stokes equations in Bessel-potential spaces, J. Math. Anal. Appl., 312 (2005), 1-13.
doi: 10.1016/j.jmaa.2004.06.068. |
[24] |
J. Wu, Regularity results for weak solutions of the 3D MHD equations, Discrete Contin. Dyn. Syst., 10 (2004), 543-556.
doi: 10.3934/dcds.2004.10.543. |
[25] |
J. Wu, Bounds and new approaches for the 3D MHD equations, J. Nonlinear Sci., 12 (2002), 395-413.
doi: 10.1007/s00332-002-0486-0. |
show all references
References:
[1] |
J. Bergh and J. Löfström, "Interpolation Spaces, An Introduction," Springer-Verlag, New York, 1976. |
[2] |
M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Revista Matemática Iberoamericana, 13 (1997), 515-541. |
[3] |
M. Cannone, C. X. Miao, N. Prioux and B. Q. Yuan, The Cauchy problem for the Magneto-hydrodynamic system, self-similar solutions of nonlinear PDE, Banach Center Publications, Institue of Mathematics, Polish Academy of Scuences, Warszawa, 74 (2006), 59-93. |
[4] |
C. Cao and J. Wu, Two regularity criteria for the 3D MHD equation, J. Differential Equations, 248 (2010), 2263-2274.
doi: 10.1016/j.jde.2009.09.020. |
[5] |
S. Cui and C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(R^n)$ and applications, Nonlinear Analysis, 67 (2007), 687-707.
doi: 10.1016/j.na.2006.06.020. |
[6] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archive for Rational Mechanics and Analysis, 16 (1964), 269-315.
doi: 10.1007/BF00276188. |
[7] |
Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212. |
[8] |
Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier Stokes equations with nondecaying initial data, Quaderni di Matematica, 3 (1999), 28-68. |
[9] |
Y. Giga and T. Miyakwa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Archive for Rational Mechanics and Analysis, 89 (1985), 267-281.
doi: 10.1007/BF00276875. |
[10] |
Y. Giga and O. Sawada, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear Anal. Real World Appl., 1 (2003), 549-562. |
[11] |
C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 33 (1969), 386-405.
doi: 10.1007/BF00247697. |
[12] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbf{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.
doi: 10.1007/BF01174182. |
[13] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[14] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Kortweg-de Vries equation via contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[15] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[16] |
H. Kozono and M. Yamazaki, Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data, Comm. Part. Diff. Equ., 19 (1994), 959-1014.
doi: 10.1080/03605309408821042. |
[17] |
P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Chapman and Hall/CRC, 2002. |
[18] |
Y. Meyer, Wavelets, paraproducts and Navier-Stokes equations, in "Current Developments in Mathematics (1996)," Cambridge, MA, Int. Press, Boston, MA, (1997), 105-212. |
[19] |
C. Miao, B. Yuan and B. Zhang, Well-posedness for the incompressible magneto-hydrodynamic system, Math. Meth. Appl. Sci., 30 (2007), 961-976.
doi: 10.1002/mma.820. |
[20] |
C. Miao and B. Yuan, On well-posedness of the Cauchy problem for MHD system in Besov spaces, Math. Meth. Appl. Sci., 32 (2009), 53-76.
doi: 10.1002/mma.1026. |
[21] |
H. Miura and O. Sawada, On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations, Asymptotic Analysis, 49 (2006), 1-15. |
[22] |
M. Sermang and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.
doi: 10.1002/cpa.3160360506. |
[23] |
O. Sawada, On analyticity rate estimates of the solutions to the Navier-Stokes equations in Bessel-potential spaces, J. Math. Anal. Appl., 312 (2005), 1-13.
doi: 10.1016/j.jmaa.2004.06.068. |
[24] |
J. Wu, Regularity results for weak solutions of the 3D MHD equations, Discrete Contin. Dyn. Syst., 10 (2004), 543-556.
doi: 10.3934/dcds.2004.10.543. |
[25] |
J. Wu, Bounds and new approaches for the 3D MHD equations, J. Nonlinear Sci., 12 (2002), 395-413.
doi: 10.1007/s00332-002-0486-0. |
[1] |
Xuhui Peng, Jianhua Huang, Yan Zheng. Exponential mixing for the fractional Magneto-Hydrodynamic equations with degenerate stochastic forcing. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4479-4506. doi: 10.3934/cpaa.2020204 |
[2] |
Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1833-1849. doi: 10.3934/cpaa.2021044 |
[3] |
Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic and Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117 |
[4] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1497-1510. doi: 10.3934/dcdsb.2021099 |
[5] |
Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332 |
[6] |
Boling Guo, Guangwu Wang. Existence of the solution for the viscous bipolar quantum hydrodynamic model. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3183-3210. doi: 10.3934/dcds.2017136 |
[7] |
Jaeseop Ahn, Jimyeong Kim, Ihyeok Seo. On the radius of spatial analyticity for defocusing nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 423-439. doi: 10.3934/dcds.2020016 |
[8] |
Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649 |
[9] |
Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge. On the local C1, α solution of ideal magneto-hydrodynamical equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2103-2113. doi: 10.3934/dcds.2017090 |
[10] |
Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357 |
[11] |
A. Alexandrou Himonas, Gerson Petronilho. A $ G^{\delta, 1} $ almost conservation law for mCH and the evolution of its radius of spatial analyticity. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2031-2050. doi: 10.3934/dcds.2020351 |
[12] |
Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic and Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901 |
[13] |
Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341 |
[14] |
Peter Markowich, Jesús Sierra. Non-uniqueness of weak solutions of the Quantum-Hydrodynamic system. Kinetic and Related Models, 2019, 12 (2) : 347-356. doi: 10.3934/krm.2019015 |
[15] |
Hyun-Jung Kim. Stochastic parabolic Anderson model with time-homogeneous generalized potential: Mild formulation of solution. Communications on Pure and Applied Analysis, 2019, 18 (2) : 795-807. doi: 10.3934/cpaa.2019038 |
[16] |
Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103 |
[17] |
Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations and Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008 |
[18] |
Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092 |
[19] |
Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267 |
[20] |
Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]