• Previous Article
    Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal
  • CPAA Home
  • This Issue
  • Next Article
    Regularizing rate estimates for mild solutions of the incompressible Magneto-hydrodynamic system
September  2012, 11(5): 1661-1697. doi: 10.3934/cpaa.2012.11.1661

A class of large amplitude oscillating solutions for three dimensional Euler equations

1. 

UMR6625, Université Rennes 1, Campus de Beaulieu, 263 avenue du Général Leclerc CS 74205, 35042 Rennes

2. 

IRMAR, UMR 6625-CNRS, Universite de Rennes I,Campus de Beaulieu, 35042 Rennes, France

Received  December 2010 Revised  December 2011 Published  March 2012

In this article, we construct large amplitude oscillating waves, noted $ (u ^ {\varepsilon}) _ {\varepsilon} $ where $ \varepsilon \in] 0,1] $ is a parameter going to zero, which are devised to be local solutions on some open domain of the time-space $ R_+ \times R^3$ of both the three dimensional Burger equations (without source term), the compressible Euler equations (with some constant pressure) and the incompressible Euler equations (without pressure). The functions $ u^\varepsilon (t,x) $ are characterized by the fact that the corresponding Jacobian matrices $ D_x u^\varepsilon (t,x) $ are nilpotent of rank one or two. Our purpose is to describe the interesting geometrical features of the expressions $ u^\varepsilon (t,x) $ which can be obtained by this way.
Citation: Christophe Cheverry, Mekki Houbad. A class of large amplitude oscillating solutions for three dimensional Euler equations. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1661-1697. doi: 10.3934/cpaa.2012.11.1661
References:
[1]

A. Biryuk, On multidimensional Burgers type equations with small viscosity,, in, (2004), 1. doi: 10.1007/978-3-0348-7877-7_1. Google Scholar

[2]

W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry,", Pure and Applied Mathematics, (1975). Google Scholar

[3]

C. Cheverry, A deterministic model for the propagation of turbulent oscillations,, J. Differ. Equations, 9 (2009), 2637. doi: 10.1016/j.jde.2009.08.009. Google Scholar

[4]

C. Cheverry and O. Guès, Counter-examples to concentration-cancellation,, Arch. Ration. Mech. Anal., 189 (2008), 363. doi: 10.1007/s00205-008-0132-6. Google Scholar

[5]

C. Cheverry, O. Guès and G. Métivier, Large-amplitude high-frequency waves for quasilinear hyperbolic systems,, Adv. Differential Equations, 9 (2004), 1065. Google Scholar

[6]

C. Cheverry and M. Houbad, Compatibility conditions to allow some large amplitude WKB analysis for Burger's type systems,, Phys. D, 237 (2008), 1429. doi: 10.1016/j.physd.2008.03.022. Google Scholar

[7]

C. Cheverry, Cascade of phases in turbulent flows,, Bull. Soc. Math. France, 134 (2006), 33. Google Scholar

[8]

C. Cheverry, Recent results in large amplitude monophase nonlinear geometric optics,, in, 6 (2008), 267. doi: 10.1007/978-0-387-75217-4_5. Google Scholar

[9]

J.-F. Coulombel and A. Morando, Stability of contact discontinuities for the nonisentropic Euler equations,, Ann. Univ. Ferrara Sez. VII (N.S.), 50 (2004), 79. Google Scholar

[10]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations,, Comm. Math. Phys., 108 (1987), 667. doi: 10.1007/BF01214424. Google Scholar

[11]

I. Gallagher and L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field,, SIAM J. Math. Anal., 36 (2005), 1159. doi: 10.1137/S0036141003435540. Google Scholar

[12]

E. Grenier, On the nonlinear instability of Euler and Prandtl equations,, Comm. Pure Appl. Math., 53 (2000), 1067. doi: 10.1002/1097-0312(200009)53:9<1067::AID-CPA1>3.0.CO;2-Q. Google Scholar

[13]

M. Houbad, "Oscillations, feuilletages, lois de Burger,", Ph.D thesis, (2010). Google Scholar

[14]

J.-L. Joly, G. Métivier and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves,, Duke Math. J., 70 (1993), 373. doi: 10.1215/S0012-7094-93-07007-X. Google Scholar

[15]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, 27 (2002). Google Scholar

[16]

S. Schochet, Fast singular limits of hyperbolic PDEs,, J. Differential Equations, 114 (1994), 476. doi: 10.1006/jdeq.1994.1157. Google Scholar

show all references

References:
[1]

A. Biryuk, On multidimensional Burgers type equations with small viscosity,, in, (2004), 1. doi: 10.1007/978-3-0348-7877-7_1. Google Scholar

[2]

W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry,", Pure and Applied Mathematics, (1975). Google Scholar

[3]

C. Cheverry, A deterministic model for the propagation of turbulent oscillations,, J. Differ. Equations, 9 (2009), 2637. doi: 10.1016/j.jde.2009.08.009. Google Scholar

[4]

C. Cheverry and O. Guès, Counter-examples to concentration-cancellation,, Arch. Ration. Mech. Anal., 189 (2008), 363. doi: 10.1007/s00205-008-0132-6. Google Scholar

[5]

C. Cheverry, O. Guès and G. Métivier, Large-amplitude high-frequency waves for quasilinear hyperbolic systems,, Adv. Differential Equations, 9 (2004), 1065. Google Scholar

[6]

C. Cheverry and M. Houbad, Compatibility conditions to allow some large amplitude WKB analysis for Burger's type systems,, Phys. D, 237 (2008), 1429. doi: 10.1016/j.physd.2008.03.022. Google Scholar

[7]

C. Cheverry, Cascade of phases in turbulent flows,, Bull. Soc. Math. France, 134 (2006), 33. Google Scholar

[8]

C. Cheverry, Recent results in large amplitude monophase nonlinear geometric optics,, in, 6 (2008), 267. doi: 10.1007/978-0-387-75217-4_5. Google Scholar

[9]

J.-F. Coulombel and A. Morando, Stability of contact discontinuities for the nonisentropic Euler equations,, Ann. Univ. Ferrara Sez. VII (N.S.), 50 (2004), 79. Google Scholar

[10]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations,, Comm. Math. Phys., 108 (1987), 667. doi: 10.1007/BF01214424. Google Scholar

[11]

I. Gallagher and L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field,, SIAM J. Math. Anal., 36 (2005), 1159. doi: 10.1137/S0036141003435540. Google Scholar

[12]

E. Grenier, On the nonlinear instability of Euler and Prandtl equations,, Comm. Pure Appl. Math., 53 (2000), 1067. doi: 10.1002/1097-0312(200009)53:9<1067::AID-CPA1>3.0.CO;2-Q. Google Scholar

[13]

M. Houbad, "Oscillations, feuilletages, lois de Burger,", Ph.D thesis, (2010). Google Scholar

[14]

J.-L. Joly, G. Métivier and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves,, Duke Math. J., 70 (1993), 373. doi: 10.1215/S0012-7094-93-07007-X. Google Scholar

[15]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, 27 (2002). Google Scholar

[16]

S. Schochet, Fast singular limits of hyperbolic PDEs,, J. Differential Equations, 114 (1994), 476. doi: 10.1006/jdeq.1994.1157. Google Scholar

[1]

Sasho Popov, Jean-Marie Strelcyn. The Euler-Poisson equations: An elementary approach to integrability conditions. Journal of Geometric Mechanics, 2018, 10 (3) : 293-329. doi: 10.3934/jgm.2018011

[2]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[3]

Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89

[4]

Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124

[5]

Daomin Cao, Ezzat S. Noussair, Shusen Yan. On the profile of solutions for an elliptic problem arising in nonlinear optics. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 649-666. doi: 10.3934/dcds.2004.11.649

[6]

Tianhong Li. Some special solutions of the multidimensional Euler equations in $R^N$. Communications on Pure & Applied Analysis, 2005, 4 (4) : 757-762. doi: 10.3934/cpaa.2005.4.757

[7]

Abbas Moameni. Soliton solutions for quasilinear Schrödinger equations involving supercritical exponent in $\mathbb R^N$. Communications on Pure & Applied Analysis, 2008, 7 (1) : 89-105. doi: 10.3934/cpaa.2008.7.89

[8]

Danny Calegari. Geometry and topology of $\mathbb{R}$-covered foliations. Electronic Research Announcements, 2000, 6: 31-39.

[9]

Aibin Zang. Kato's type theorems for the convergence of Euler-Voigt equations to Euler equations with Drichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4945-4953. doi: 10.3934/dcds.2019202

[10]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[11]

Maria Do Rosario Grossinho, Rogério Martins. Subharmonic oscillations for some second-order differential equations without Landesman-Lazer conditions. Conference Publications, 2001, 2001 (Special) : 174-181. doi: 10.3934/proc.2001.2001.174

[12]

Carlos Gutierrez, Víctor Guíñez. Simple umbilic points on surfaces immersed in $\R^4$. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 877-900. doi: 10.3934/dcds.2003.9.877

[13]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[14]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 4003-4039. doi: 10.3934/dcdsb.2017205

[15]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

[16]

Marcel Oliver. The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier–Stokes equations with Besov class data in $\mathbb{R}^2$. Communications on Pure & Applied Analysis, 2002, 1 (2) : 221-235. doi: 10.3934/cpaa.2002.1.221

[17]

E. N. Dancer, Shusen Yan. On the existence of multipeak solutions for nonlinear field equations on $R^N$. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 39-50. doi: 10.3934/dcds.2000.6.39

[18]

Francois van Heerden, Zhi-Qiang Wang. On a class of anisotropic nonlinear elliptic equations in $\mathbb R^N$. Communications on Pure & Applied Analysis, 2008, 7 (1) : 149-162. doi: 10.3934/cpaa.2008.7.149

[19]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[20]

Mauricio Godoy Molina, Erlend Grong. Geometric conditions for the existence of a rolling without twisting or slipping. Communications on Pure & Applied Analysis, 2014, 13 (1) : 435-452. doi: 10.3934/cpaa.2014.13.435

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]