-
Previous Article
An effective design method to produce stationary chemical reaction-diffusion patterns
- CPAA Home
- This Issue
-
Next Article
Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes
Uniqueness from pointwise observations in a multi-parameter inverse problem
1. | Aix-Marseille Université, LATP, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France |
2. | UR 546 Biostatistique et Processus Spatiaux, INRA, F-84000 Avignon, France, and Aix-Marseille Université, LATP, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France |
3. | Aix-Marseille Université & Institut Universitaire de France, LATP, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20 |
4. | UR 546 Biostatistique et Processus Spatiaux, INRA, F-84000 Avignon, France |
References:
[1] |
W. C. Allee, "The Social Life of Animals," Norton, New York, 1938. |
[2] |
M. Bellassoued and M. Yamamoto, Inverse source problem for a transmission problem for a parabolic equation, J. Inverse Ill-Posed Probl., 14 (2006), 47-56.
doi: 10.1163/156939406776237456. |
[3] |
A. Benabdallah, M. Cristofol, P. Gaitan and M. Yamamoto, Inverse problem for a parabolic system with two components by measurements of one component, Appl. Anal., 88 (2009), 683-710.
doi: 10.1080/00036810802555490. |
[4] |
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model: I - Species persistence, J. Math. Biol., 51 (2005), 75-113.
doi: 10.1007/s00285-004-0313-3. |
[5] |
A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Soviet Math. Doklady, 24 (1981), 244-247. |
[6] |
R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations," John Wiley & Sons Ltd, Chichester, UK, 2003.
doi: 10.1002/0470871296. |
[7] |
M. Choulli, E. M. Ouhabaz and M. Yamamoto, Stable determination of a semilinear term in a parabolic equation, Commun. Pure Appl. Anal., 5 (2006), 447-462.
doi: 10.3934/cpaa.2006.5.447. |
[8] |
M. Cristofol, P. Gaitan and H. Ramoul, Inverse problems for a $2\times 2$ reaction-diffusion system using a carleman estimate with one observation, Inverse Problems, 22 (2006), 1561-1573.
doi: 10.1088/0266-5611/22/5/003. |
[9] |
M. Cristofol and L. Roques, Biological invasions: deriving the regions at risk from partial measurements, Math. Biosci., 215 (2008), 158-166.
doi: 10.1016/j.mbs.2008.07.004. |
[10] |
B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Natur. Resource Modeling, 3 (1989), 481-538. |
[11] |
P. DuChateau and W. Rundell, Unicity in an inverse problem for an unknown reaction term in a reaction-diffusion equation, J. Differential Equations, 59 (1985), 155-164. |
[12] |
H. Egger, H. W. Engl and M. V. Klibanov, Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation, Inverse Problems, 21 (2005), 271-290.
doi: 10.1088/0266-5611/21/1/017. |
[13] |
M. El Smaily, F. Hamel and L. Roques, Homogenization and influence of fragmentation in a biological invasion model, Discrete Contin. Dyn. Syst. - A, 25 (2009), 321-342.
doi: 10.3934/dcds.2009.25.321. |
[14] |
R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 335-369. |
[15] |
A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Englewood Cliffs, NJ, 1964. |
[16] |
F. Hamel, J. Fayard and L. Roques, Spreading speeds in slowly oscillating environments, Bull. Math. Biol., 72 (2010), 1166-1191.
doi: 10.1007/s11538-009-9486-7. |
[17] |
O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14 (1998), 1229-1245.
doi: 10.1088/0266-5611/14/5/009. |
[18] |
T. H. Keitt, M. A. Lewis and R. D. Holt, Allee effects, invasion pinning, and species' borders, American Naturalist, 157 (2001), 203-216.
doi: 10.1086/318633. |
[19] |
M. V. Klibanov and A. Timonov, "Carleman Estimates for Coefficient Inverse Problems and Numerical Applications," Inverse And Ill-Posed Series, VSP, Utrecht, 2004. |
[20] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Internationale A, 1 (1937), 1-26. |
[21] |
M. A. Lewis and P. Kareiva, Allee dynamics and the speed of invading organisms, Theor. Population Biol., 43 (1993), 141-158.
doi: 10.1006/tpbi.1993.1007. |
[22] |
A. Lorenzi, An inverse problem for a semilinear parabolic equation, Ann. Mat. Pura Appl., 131 (1982), 145-166.
doi: 10.1007/BF01765150. |
[23] |
H. Matano, K.-I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit, Netw. Heterog. Media, 1 (2006), 537-568. |
[24] |
J. D. Murray, "Mathematical Biology," 3rd edition, Interdisciplinary Applied Mathematics 17, Springer-Verlag, New York, 2002.
doi: 10.1007/b98868. |
[25] |
S.-I. Nakamura, A note on uniqueness in an inverse problem for a semilinear parabolic equation, Nihonkai Math. J., 12 (2001), 71-73. |
[26] |
C. V. Pao, "Nonlinear Parabolic and Elliptic Equations," Plenum Press, New York, 1992. |
[27] |
M. S. Pilant and W. Rundell,, An inverse problem for a nonlinear parabolic equation, Comm. Partial Differential Equations, 11 (1986), 445-457.
doi: 10.1080/03605308608820430. |
[28] |
L. Roques and M. D. Chekroun, On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007), 133-153.
doi: 10.1137/060676994. |
[29] |
L. Roques and M. Cristofol, On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation, Nonlinearity, 23 (2010), 675-686.
doi: 10.1088/0951-7715/23/3/014. |
[30] |
L. Roques and F. Hamel, Mathematical analysis of the optimal habitat configurations for species persistence, Math. Biosci., 210 (2007), 34-59.
doi: 10.1016/j.mbs.2007.05.007. |
[31] |
L. Roques, A. Roques, H. Berestycki and A. Kretzschmar, A population facing climate change: joint influences of Allee effects and environmental boundary geometry, Population Ecology, 50 (2008), 215-225.
doi: 10.1007/s10144-007-0073-1. |
[32] |
L. Roques and R. S. Stoica, Species persistence decreases with habitat fragmentation: an analysis in periodic stochastic environments, J. Math. Biol., 55 (2007), 189-205.
doi: 10.1007/s00285-007-0076-8. |
[33] |
N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford Series in Ecology and Evolution, Oxford: Oxford University Press, 1997. |
[34] |
N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic-waves in heterogeneous environments, Theoret. Population Biol., 30 (1986), 143-160.
doi: 10.1016/0040-5809(86)90029-8. |
[35] |
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218. |
[36] |
S. Soubeyrand, L. Held, M. Hohle and I. Sache, Modelling the spread in space and time of an airborne plant disease, J. Roy. Statist. Soc. Ser. C, 57 (2008), 253-272.
doi: 10.1111/j.1467-9876.2007.00612.x. |
[37] |
S. Soubeyrand, S. Neuvonen and A. Penttinen, Mechanical-statistical modeling in ecology: from outbreak detections to pest dynamics, Bull. Math. Biol., 71 (2009), 318-338.
doi: 10.1007/s11538-008-9363-9. |
[38] |
P. Turchin, "Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants," Sinauer Associates, Sunderland, MA, 1998. |
[39] |
A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London - B, 237 (1952), 37-72. |
[40] |
R. R. Veit and M. A. Lewis, Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America, American Naturalist, 148 (1996), 255-274.
doi: 10.1086/285924. |
[41] |
C. K. Wikle, Hierarchical models in environmental science, Intern. Stat. Rev., 71 (2003), 181-199.
doi: 10.1111/j.1751-5823.2003.tb00192.x. |
[42] |
M. Yamamoto and J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems, 17 (2001), 1181-1202.
doi: 10.1088/0266-5611/17/4/340. |
show all references
References:
[1] |
W. C. Allee, "The Social Life of Animals," Norton, New York, 1938. |
[2] |
M. Bellassoued and M. Yamamoto, Inverse source problem for a transmission problem for a parabolic equation, J. Inverse Ill-Posed Probl., 14 (2006), 47-56.
doi: 10.1163/156939406776237456. |
[3] |
A. Benabdallah, M. Cristofol, P. Gaitan and M. Yamamoto, Inverse problem for a parabolic system with two components by measurements of one component, Appl. Anal., 88 (2009), 683-710.
doi: 10.1080/00036810802555490. |
[4] |
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model: I - Species persistence, J. Math. Biol., 51 (2005), 75-113.
doi: 10.1007/s00285-004-0313-3. |
[5] |
A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Soviet Math. Doklady, 24 (1981), 244-247. |
[6] |
R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations," John Wiley & Sons Ltd, Chichester, UK, 2003.
doi: 10.1002/0470871296. |
[7] |
M. Choulli, E. M. Ouhabaz and M. Yamamoto, Stable determination of a semilinear term in a parabolic equation, Commun. Pure Appl. Anal., 5 (2006), 447-462.
doi: 10.3934/cpaa.2006.5.447. |
[8] |
M. Cristofol, P. Gaitan and H. Ramoul, Inverse problems for a $2\times 2$ reaction-diffusion system using a carleman estimate with one observation, Inverse Problems, 22 (2006), 1561-1573.
doi: 10.1088/0266-5611/22/5/003. |
[9] |
M. Cristofol and L. Roques, Biological invasions: deriving the regions at risk from partial measurements, Math. Biosci., 215 (2008), 158-166.
doi: 10.1016/j.mbs.2008.07.004. |
[10] |
B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Natur. Resource Modeling, 3 (1989), 481-538. |
[11] |
P. DuChateau and W. Rundell, Unicity in an inverse problem for an unknown reaction term in a reaction-diffusion equation, J. Differential Equations, 59 (1985), 155-164. |
[12] |
H. Egger, H. W. Engl and M. V. Klibanov, Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation, Inverse Problems, 21 (2005), 271-290.
doi: 10.1088/0266-5611/21/1/017. |
[13] |
M. El Smaily, F. Hamel and L. Roques, Homogenization and influence of fragmentation in a biological invasion model, Discrete Contin. Dyn. Syst. - A, 25 (2009), 321-342.
doi: 10.3934/dcds.2009.25.321. |
[14] |
R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 335-369. |
[15] |
A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Englewood Cliffs, NJ, 1964. |
[16] |
F. Hamel, J. Fayard and L. Roques, Spreading speeds in slowly oscillating environments, Bull. Math. Biol., 72 (2010), 1166-1191.
doi: 10.1007/s11538-009-9486-7. |
[17] |
O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14 (1998), 1229-1245.
doi: 10.1088/0266-5611/14/5/009. |
[18] |
T. H. Keitt, M. A. Lewis and R. D. Holt, Allee effects, invasion pinning, and species' borders, American Naturalist, 157 (2001), 203-216.
doi: 10.1086/318633. |
[19] |
M. V. Klibanov and A. Timonov, "Carleman Estimates for Coefficient Inverse Problems and Numerical Applications," Inverse And Ill-Posed Series, VSP, Utrecht, 2004. |
[20] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Internationale A, 1 (1937), 1-26. |
[21] |
M. A. Lewis and P. Kareiva, Allee dynamics and the speed of invading organisms, Theor. Population Biol., 43 (1993), 141-158.
doi: 10.1006/tpbi.1993.1007. |
[22] |
A. Lorenzi, An inverse problem for a semilinear parabolic equation, Ann. Mat. Pura Appl., 131 (1982), 145-166.
doi: 10.1007/BF01765150. |
[23] |
H. Matano, K.-I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit, Netw. Heterog. Media, 1 (2006), 537-568. |
[24] |
J. D. Murray, "Mathematical Biology," 3rd edition, Interdisciplinary Applied Mathematics 17, Springer-Verlag, New York, 2002.
doi: 10.1007/b98868. |
[25] |
S.-I. Nakamura, A note on uniqueness in an inverse problem for a semilinear parabolic equation, Nihonkai Math. J., 12 (2001), 71-73. |
[26] |
C. V. Pao, "Nonlinear Parabolic and Elliptic Equations," Plenum Press, New York, 1992. |
[27] |
M. S. Pilant and W. Rundell,, An inverse problem for a nonlinear parabolic equation, Comm. Partial Differential Equations, 11 (1986), 445-457.
doi: 10.1080/03605308608820430. |
[28] |
L. Roques and M. D. Chekroun, On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007), 133-153.
doi: 10.1137/060676994. |
[29] |
L. Roques and M. Cristofol, On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation, Nonlinearity, 23 (2010), 675-686.
doi: 10.1088/0951-7715/23/3/014. |
[30] |
L. Roques and F. Hamel, Mathematical analysis of the optimal habitat configurations for species persistence, Math. Biosci., 210 (2007), 34-59.
doi: 10.1016/j.mbs.2007.05.007. |
[31] |
L. Roques, A. Roques, H. Berestycki and A. Kretzschmar, A population facing climate change: joint influences of Allee effects and environmental boundary geometry, Population Ecology, 50 (2008), 215-225.
doi: 10.1007/s10144-007-0073-1. |
[32] |
L. Roques and R. S. Stoica, Species persistence decreases with habitat fragmentation: an analysis in periodic stochastic environments, J. Math. Biol., 55 (2007), 189-205.
doi: 10.1007/s00285-007-0076-8. |
[33] |
N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford Series in Ecology and Evolution, Oxford: Oxford University Press, 1997. |
[34] |
N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic-waves in heterogeneous environments, Theoret. Population Biol., 30 (1986), 143-160.
doi: 10.1016/0040-5809(86)90029-8. |
[35] |
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218. |
[36] |
S. Soubeyrand, L. Held, M. Hohle and I. Sache, Modelling the spread in space and time of an airborne plant disease, J. Roy. Statist. Soc. Ser. C, 57 (2008), 253-272.
doi: 10.1111/j.1467-9876.2007.00612.x. |
[37] |
S. Soubeyrand, S. Neuvonen and A. Penttinen, Mechanical-statistical modeling in ecology: from outbreak detections to pest dynamics, Bull. Math. Biol., 71 (2009), 318-338.
doi: 10.1007/s11538-008-9363-9. |
[38] |
P. Turchin, "Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants," Sinauer Associates, Sunderland, MA, 1998. |
[39] |
A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London - B, 237 (1952), 37-72. |
[40] |
R. R. Veit and M. A. Lewis, Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America, American Naturalist, 148 (1996), 255-274.
doi: 10.1086/285924. |
[41] |
C. K. Wikle, Hierarchical models in environmental science, Intern. Stat. Rev., 71 (2003), 181-199.
doi: 10.1111/j.1751-5823.2003.tb00192.x. |
[42] |
M. Yamamoto and J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems, 17 (2001), 1181-1202.
doi: 10.1088/0266-5611/17/4/340. |
[1] |
Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks and Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369 |
[2] |
Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151 |
[3] |
Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks and Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001 |
[4] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure and Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291 |
[5] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891 |
[6] |
Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011 |
[7] |
Aníbal Rodríguez-Bernal, Silvia Sastre-Gómez. Nonlinear nonlocal reaction-diffusion problem with local reaction. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1731-1765. doi: 10.3934/dcds.2021170 |
[8] |
Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173 |
[9] |
Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516 |
[10] |
Grégory Faye, Thomas Giletti, Matt Holzer. Asymptotic spreading for Fisher-KPP reaction-diffusion equations with heterogeneous shifting diffusivity. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021146 |
[11] |
Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007 |
[12] |
Md. Ibrahim Kholil, Ziqi Sun. A uniqueness theorem for inverse problems in quasilinear anisotropic media. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022008 |
[13] |
Loc H. Nguyen, Qitong Li, Michael V. Klibanov. A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media. Inverse Problems and Imaging, 2019, 13 (5) : 1067-1094. doi: 10.3934/ipi.2019048 |
[14] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[15] |
Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128 |
[16] |
José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure and Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85 |
[17] |
Georg Hetzer. Global existence for a functional reaction-diffusion problem from climate modeling. Conference Publications, 2011, 2011 (Special) : 660-671. doi: 10.3934/proc.2011.2011.660 |
[18] |
Aníbal Rodríguez-Bernal, Alejandro Vidal–López. Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 537-567. doi: 10.3934/dcds.2007.18.537 |
[19] |
Alexey Cheskidov, Songsong Lu. The existence and the structure of uniform global attractors for nonautonomous Reaction-Diffusion systems without uniqueness. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 55-66. doi: 10.3934/dcdss.2009.2.55 |
[20] |
Shin-Ichiro Ei, Kota Ikeda, Eiji Yanagida. Instability of multi-spot patterns in shadow systems of reaction-diffusion equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 717-736. doi: 10.3934/cpaa.2015.14.717 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]