\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion

Abstract / Introduction Related Papers Cited by
  • In this article we study local and global well-posedness of the Lagrangian Averaged Euler equations. We show local well-posedness in Triebel-Lizorkin spaces and further prove a Beale-Kato-Majda type necessary and sufficient condition for global existence involving the stream function. We also establish new sufficient conditions for global existence in terms of mixed Lebesgue norms of the generalized Clebsch variables.
    Mathematics Subject Classification: Primary: 76B03; Secondary: 35Q35, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Robert A. Adams, "Sobolev Spaces," Academic Press New York, 1975.

    [2]

    Claude Bardos, Jasmine S. Linshiz and Edriss S. Titi, Global regularity and convergence of a Birkhoff-Rott-$\alpha$ approximation of the dynamics of vortex sheets of the 2D Euler equaitons, Comm. Pure. Appl. Math., 63 (2010), 697-746.doi: 10.1002/cpa.20305.

    [3]

    Dongho Chae, On the well-posedness of the Euler equations in the Besov and Triebel-Lizorkin spaces, in: Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics, A Proceedings of the workshop held at Hokkaido University, Japan, Yurinsha, June 27-29,2001, Tokyo 2002, pp. 42-57; see also: Local existence and blow-up criterion for the Euler equations in the besov spaces, RIM-GARC, Seoul National University, Korea, Preprint No.8, June 2001.

    [4]

    Dongho Chae, On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces, Comm. Pure Appl. Math., 55 (2002), 654-678.doi: 10.1002/cpa.10029.

    [5]

    Shiyi Chen, Ciprian Foias, Darryl D. Holm, Eric J. Olson, Edriss S. Titi and Shannon Wynne, The Camassa-Holm equations as a closure model for turbulent channel and pipe flows, Phys. Fluids, 11 (1999), 2343-2353.doi: 10.1063/1.870096.

    [6]

    Shiyi Chen, Darryl D. Holm, Len G. Margolin and Raoyang Zhang, Direct numerical simulations of the Navier-Stokes alpha model, Phys. D., 133 (1999), 66-83.doi: 10.1016/S0167-2789(99)00099-8.

    [7]

    Qionglei Chen, Changxing Miao and Zhifei Zhang, On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces, Arch. Rational Mech. Anal., 195 (2010), 561-578.doi: 10.1007/s00205-008-0213-6.

    [8]

    Alexandre J. Chorin and Jerrold E. Marsden, "A Mathemtaical Introduction to Fluid Mechanics," 3rd ed., Springer-Verlag, New York, 1993.

    [9]

    Jian Deng, Thomas Y. Hou and Xinwei Yu, A level set formulation for the 3D incompressible Euler equations, Methods Appl. Anal., 12 (2005), 427-440.

    [10]

    Ciprian Foias, Darryl D. Holm and Edriss S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35.doi: 10.1023/A:1012984210582.

    [11]

    C. Robin Graham and Frank S. Henyey, Clebsch representation near points where the vorticity vanishes, Physics of Fluids, 12 (2000), 744-746.doi: 10.1063/1.870331.

    [12]

    Darryl D. Holm, Jerrold E. Marsden and Tudor S. Ratiu, Euler-Poincaré models of ideal fluids with nonlinear dispersion, {Phys. Rev. Lett., 349 (1998), 4173-4177.doi: 10.1103/PhysRevLett.80.4173.

    [13]

    Darryl D. Holm, Jerrold E. Marsden and Tudor S. Ratiu, Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.doi: 10.1006/aima.1998.1721.

    [14]

    Darryl D. Holm, Monika Nitsche and Vakhtang Putkaradze, Euler-alpha and vortex blob regularization of vortex filament and vortex sheet motion, J. Fluid Mech., 555 (2006), 149-176.doi: 10.1017/S0022112006008846.

    [15]

    Thomas Y. Hou and Congming Li, On global well-posedness of the Lagrangian averaged Euler equations, SIAM J. Math. Anal., 38 (2006), 782-794.

    [16]

    Quansen Jiu, Dongjuan Niu, Edriss S. Titi and Zhouping XinAxisymmetric Euler-$\alpha$ equations without swirl: existence, uniqueness, and rodon measure valued solutions, preprint, arxiv{0907.2348}.

    [17]

    Ram P. Kanwal, "Generalized Functons Theory and Technique," Academic press, 1983.

    [18]

    Jasmine S. Linshiz and Edriss S. Titi, On the convergence rate of the Euler-$\alpha$, an inviscid second-grade complex fluid, model to the Euler equations, J. Stat. Phys., 138 (2010), 305-332.doi: 10.1007/s10955-009-9916-9.

    [19]

    Xiaofeng Liu, Meng Wang and Zhifei Zhang, A note on the blowup criterion of the Lagrangian averaged Euler equations, Nonlinear Anal., 67 (2007), 2447-2451.doi: 10.1016/j.na.2006.08.051.

    [20]

    Xiaofeng Liu and Houyu Jia, Local existence and blow-up criterion of the Lagrangian averaged Euler equations in Besov spaces, Comm. Pure and Appl. Anal., 7 (2008), 845-852.doi: 10.3934/cpaa.2008.7.845.

    [21]

    Jerrold E. Marsden and Steve Shkoller, Global well-posedness for the Lagrangian Navier-Stokes (LANS-$\alpha$) equations on bounded domains, R. Soc. Lond. Philos. Tran. Ser. A Math. Phys. Eng. Sci., 359 (2001), 1449-1468.doi: 10.1098/rsta.2001.0852.

    [22]

    Jerrold E. Marseden, Tudor S. Ratiu and Steve Shkoller, The geometry and analysis of the averaged Euler equations and a new differmophism group, Geom. Funct. Anal., 10 (2000), 582-599.doi: 10.1007/PL00001631.

    [23]

    Nader Masmoudi, Remarks about the inviscid limit of the Navier-Stokes system, Comm. Math. Phys., 270 (2007), 777-788.doi: 10.1007/s00220-006-0171-5.

    [24]

    Marcel Oliver and Steve Shkoller, The vortex blob method as a second-grade non-Newtononian fluid, Comm. Partial Differential Equations, 26 (2001), 295-314.doi: 10.1081/PDE-100001756.

    [25]

    Jaak Peetre, "New Thoughts on Besov Spaces," Duke University Press, 1976.

    [26]

    Thomas Runst and Winfried Sickel, "Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Operators," de Gruyter, Berlin/New York, 1996.

    [27]

    Elias M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton University Press, Princeton, New Jersey, 1970.

    [28]

    Hans Triebel, "Theorey of Function Spaces," Monograohs in Mathematics, 78. Birkhäuser, Basel, 1983.

    [29]

    Hans Triebel, "Theorey of Function Spaces II," Monograohs in Mathematics, 84. Birkhäuser, Basel, 1992.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(60) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return